Full-Body Tracking Berbasis OpenCV dan MediaPipe untuk Interaksi Objek Virtual

Main Article Content

Ria Amelia Shinta Putricia Hendra
Velian Prapatoni
Bahiskara Ananda Arryanto
Anggraini Puspita Sari

Abstract

This research introduces a system that tracks full body movements in real-time to interact with virtual objects by combining OpenCV and MediaPipe in the Unity3D game engine. The system aims to overcome the drawbacks of current tracking solutions, which typically need unique hardware and are complicated, thus restricting their usability. The suggested method uses OpenCV for capturing and preparing images, while MediaPipe Pose is chosen for its precise and efficient real-time body landmark detection. The information on the user's body position is sent to Unity3D through a named pipe system, allowing accurate management of a 3D character's actions. Tests on two devices with varying hardware specifications indicated that the system successfully monitors body positions and movements in real-time, enabling interactive interaction with virtual objects in Unity3D. An examination of performance indicated that the processing speed, accuracy of landmark detection, and frame rate are all notably affected by the hardware specifications, especially the processor and GPU. Devices with higher specifications significantly  offered a more seamless and speedy user experience. The study suggests that merging OpenCV and MediaPipe provides a precise and effective method for tracking full body movements, suitable for different interactive settings like virtual and augmented reality.

Article Details

How to Cite
Putricia Hendra, R. A. S., Prapatoni, V., Arryanto, B. A., & Sari, A. P. (2024). Full-Body Tracking Berbasis OpenCV dan MediaPipe untuk Interaksi Objek Virtual. Journal of Multidisciplinary Inquiry in Science, Technology and Educational Research, 1(4), 2120–2134. https://doi.org/10.32672/mister.v1i4.2212
Section
Articles
Author Biographies

Ria Amelia Shinta Putricia Hendra, Universitas Pembangunan Nasional "Veteran" Jawa TImur

Program Studi Informatika, Fakultas Ilmu Komputer, Universitas Pembangunan Nasional “Veteran” Jawa Timur, Surabaya, Indonesia

Velian Prapatoni, Universitas Pembangunan Nasional "Veteran" Jawa TImur

Program Studi Informatika, Fakultas Ilmu Komputer, Universitas Pembangunan Nasional “Veteran” Jawa Timur, Surabaya, Indonesia

Bahiskara Ananda Arryanto, Universitas Pembangunan Nasional "Veteran" Jawa TImur

Program Studi Informatika, Fakultas Ilmu Komputer, Universitas Pembangunan Nasional “Veteran” Jawa Timur, Surabaya, Indonesia

Anggraini Puspita Sari, Universitas Pembangunan Nasional "Veteran" Jawa TImur

Program Studi Informatika, Fakultas Ilmu Komputer, Universitas Pembangunan Nasional “Veteran” Jawa Timur, Surabaya, Indonesia

References

Anthes, C., García-Hernández, R. J., Wiedemann, M., & Kranzlmüller, D. (2016). State of the art of virtual reality technology. In 2016 IEEE Aerospace Conference (pp. 1-19). Big Sky, MT, USA: IEEE. https://doi.org/10.1109/AERO.2016.7500674

Aristidou, A., Lasenby, J., Chrysanthou, Y., & Shamir, A. (2018). Inverse kinematics techniques in computer graphics: A survey. Computer Graphics Forum, 37(6), 35-58. https://doi.org/10.1111/cgf.13310

Chung, J.-L., Ong, L.-Y., & Leow, M.-C. (2022). Comparative analysis of skeleton-based human pose estimation. Future Internet, 14(380). https://doi.org/10.3390/fi14120380

Clark, R. A., Pua, Y., Bryant, K., Hunt, P., & Clark, M. M. (2013). Validity and reliability of the Microsoft Kinect for providing lateral trunk lean feedback during gait retraining. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21(4), 567-574. https://doi.org/10.1109/TNSRE.2013.2260472

Dewi, C., Chen, R.-C., Jiang, X., & Yu, H. (2022). Adjusting eye aspect ratio for strong eye blink detection based on facial landmarks. PeerJ Computer Science, 8, e943. https://doi.org/10.7717/peerj-cs.943

Ganeshsar. (2023). Multithreaded Unity Python MediaPipe Body/Pose. GitHub. https://github.com/ganeshsar/UnityPythonMediaPipeBodyPose

Josyula, R. (2021). Human pose estimation (Studi Independen Musim Panas). Northeastern University, Electrical and Computer Engineering Department, Augmented Cognition Laboratory (ACLab).

Lugaresi, C., Tang, J., Nash, H., McClanahan, C., Uboweja, E., Hays, M., ... & Chang, M. (2019). MediaPipe: A framework for building perception pipelines. Google Research. arXiv preprint arXiv:1906.08172.

Makahaube, S. S., Sambul, A. M., & Sompie, S. R. U. (2021). Implementation of gesture recognition technology for automated education service kiosk. Universitas Sam Ratulangi, 16(4), 465–472.

Merwan, C. (2024, 27 Januari). Named pipes in .NET (C#). Medium. https://medium.com/codenx/named-pipes-in-net-c-c0459e165371

Pranav, D. (2022, 1 Maret). MediaPipe: The ultimate guide to video processing. LearnOpenCV. https://learnopencv.com/introduction-to-mediapipe/

Rasyid, F., Mustafa, M., Mahersatillah, A., Rizal, M., Mushaf, M., & Arifin, A. (2023). Deteksi mata di video smartphone menggunakan mediapipe python. JOINTECS (Journal of Information Technology and Computer Science), 8(2), 49-56. https://doi.org/10.31328/jointecs.v8i2.4562

Sari, A. P., Suzuki, H., Kitajima, T., Yasuno, T., Prasetya, D. A., & Nachrowie. (2020). Prediction model of wind speed and direction using convolutional neural network - long short term memory. In 2020 IEEE International Conference on Power and Energy (PECon) (pp. 356-361). https://doi.org/10.1109/PECon48942.2020.9314474

Ullah, K., Ahmed, I., Ahmad, M., & Khan, I. (2019). Comparison of person tracking algorithms using overhead view implemented in OpenCV. In 2019 9th Annual Information Technology, Electromechanical Engineering and Microelectronics Conference (IEMECON) (pp. 15-20). Jaipur, India: IEEE. https://doi.org/10.1109/IEMECONX.2019.8877025

Vetter, M. (2019). A pattern for client/server communication via Named Pipes via C# [Kode komputer]. GitHub. https://github.com/malcomvetter/NamedPipes

Zulkhaidi, T. C. A.-S., Maria, E., & Yulianto, Y. (2020). Pengenalan pola bentuk wajah dengan OpenCV. Jurnal Rekayasa Teknologi Informasi, 3(2), 181. Samarinda: Politeknik Pertanian.

Most read articles by the same author(s)