Analisis Perbandingan Metode Fuzzy Mamdani dan Tsukamoto dalam Prediksi Estimasi Konsumsi Listrik

Main Article Content

Aldito Restu Wintama
Alif Bayu Ammarizky
Muhammad Lizamul Arsi
Anggraini Puspita Sari

Abstract

This study aims to compare the Fuzzy Mamdani and Tsukamoto methods in estimating electricity consumption in Romania during the period 2019-2024. Daily electricity consumption data were obtained from the Kaggle dataset, which records electricity production and consumption based on energy source types. The Mamdani method employs triangular membership functions to define rules and provides output in the form of membership degrees for low, medium, and high efficiency levels. On the other hand, the Tsukamoto method utilizes a linear membership function-based approach to compute output based on direct correlations between input variables and output. Comparative analysis reveals differences in the accuracy and sensitivity of both methods to variations in electricity consumption data. The findings highlight the strengths and weaknesses of each method in the context of complex electricity consumption predictions.

Article Details

How to Cite
Wintama, A. R. ., Ammarizky, A. B., Arsi, M. L. ., & Sari, A. P. . (2024). Analisis Perbandingan Metode Fuzzy Mamdani dan Tsukamoto dalam Prediksi Estimasi Konsumsi Listrik. Journal of Multidisciplinary Inquiry in Science, Technology and Educational Research, 1(3c), 1567–1578. https://doi.org/10.32672/mister.v1i3c.2019
Section
Articles
Author Biographies

Aldito Restu Wintama, Universitas Pembangunan Nasional "Veteran" Jawa Timur

Program Studi Informatika, Fakultas Ilmu Komputer, Universitas Pembangunan Nasional “Veteran” Jawa Timur, Surabaya, Indonesia

Alif Bayu Ammarizky, Universitas Pembangunan Nasional "Veteran" Jawa Timur

Program Studi Informatika, Fakultas Ilmu Komputer, Universitas Pembangunan Nasional “Veteran” Jawa Timur, Surabaya, Indonesia

Muhammad Lizamul Arsi, Universitas Pembangunan Nasional "Veteran" Jawa Timur

Program Studi Informatika, Fakultas Ilmu Komputer, Universitas Pembangunan Nasional “Veteran” Jawa Timur, Surabaya, Indonesia

Anggraini Puspita Sari, Universitas Pembangunan Nasional "Veteran" Jawa Timur

Program Studi Informatika, Fakultas Ilmu Komputer, Universitas Pembangunan Nasional “Veteran” Jawa Timur, Surabaya, Indonesia

References

Apriyadi. (2022). Analisis prakiraan konsumsi energi listrik tahun 2022-2026 menggunakan logika fuzzy Mamdani (Studi Kasus) [Tesis Sarjana, Universitas Islam Negeri Sultan Syarif Kasim Riau].

Bouhamed, A., Moussa, N., & Ammar, B. (2022). Optimized data partitioning for fuzzy modeling using whale optimization algorithm. 2022 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), Meknes, Morocco, 1-5.

Brown, D. E. (2024). Enhancing energy management through fuzzy Mamdani prediction models. Journal of Sustainable Energy, 8(4), 215-228.

Comanita, S. (2024). Hourly electricity consumption and production. Kaggle. https://www.kaggle.com/datasets/stefancomanita/hourly-electricity-consumption-and-production

Feng, Q., Zhang, L., Liang, J., & Li, J. (2019). Missing data imputation method based on improved fuzzy c-means clustering. 2019 IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China, 1697-1700.

Garibaldi, J. M. (2011). Fuzzy logic for control and decision making. IEEE Control Systems Magazine, 31(6), 8-14.

Johnson, C. W. (2022). Fuzzy logic applications in energy consumption analysis: A review. International Journal of Fuzzy Systems, 10(3), 112-125.

Kang, J., Kim, H., & Shin, S. (2021). Energy consumption forecasting using fuzzy logic and neural networks. Journal of Energy Management and Informatics, 12(3), 123-135.

Kusumadewi, S., Hartati, S., Harjoko, A., & Wardoyo, R. (2019). Fuzzy multi-attribute decision making (fuzzy MADM). Graha Ilmu.

Liu, Y., Wu, X., & Li, Q. (2022). Application of fuzzy logic in smart grid energy management. IEEE Transactions on Smart Grid, 13(4), 1456-1467.

Maulana, M. Z., Pakpahan, F. S., Fernando, F., & Sari, A. P. (2023). Pengaturan suhu berdasarkan cahaya lampu dan manipulasi suhu untuk efisiensi energi menggunakan metode Mamdani. Prosiding Seminar Nasional Informatika Bela Negara, 3, 19-22.

Mohamad, M. A., Omatu, S., & Yoshioka, M. (2021). Fuzzy time series forecasting model based on granular computing and type-2 fuzzy sets. 2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Luxembourg City, Luxembourg, 1-6.

Muhtadi, N. S., Rahman, D. M., & Surianto, D. F. (2020). Analisis risiko kebakaran hutan dengan logika fuzzy Mamdani. Jurnal Informatika dan Teknik Elektro Terapan, 3(1), 21-28.

Saifudin, A., Roziqin, A., & Thohari, M. (2023). Analisis komparatif inferensi fuzzy Tsukamoto, Mamdani dan Sugeno terhadap produktivitas padi di Indonesia. Ledger, 2(1).

Sari, A. P. (2023). Analisis akurasi prediksi akselerasi mobil listrik berdasarkan kecepatan dan daya baterai menggunakan fuzzy logic metode Sugeno dan Mamdani. Prosiding Seminar Nasional Informatika Bela Negara, 3, 107-112.

Smith, A. B. (2023). Developing an efficient energy consumption prediction model using fuzzy Mamdani method. Journal of Energy Management, 5(2), 78-91.

Tan, Z., & Lin, H. (2023). Fuzzy logic control for residential energy management systems. International Journal of Electrical Power & Energy Systems, 140, 107931.

Widarma, A., & Kumala, H. (2018). Implementasi logika fuzzy metode Mamdani untuk klasifikasi konsumen listrik subsidi dan non subsidi. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 4(10).

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353.

Zhu, W., Zhou, J., & Hu, Q. (2020). A novel outlier detection algorithm based on fuzzy rough set theory. 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Glasgow, United Kingdom, 1-6.

Most read articles by the same author(s)