Sistem Rekomendasi Linimasa Facebook Berdasarkan Topik Kesukaan Pengguna Menggunakan Metode Content-Based Filtering & Term Frequency-Inverse Document Frequency
Main Article Content
Abstract
This research aims to identify Facebook timeline recommendation systems based on user habits using Content-Based Filtering (CBF) and Term Frequency-Inverse Document Frequency (TF-IDF) methods. By utilizing historical user activity data, this system will customize content recommendations for individual users. The CBF method is used to compare the similarity of the content to be recommended with the user's habits, while TF-IDF is used to evaluate various keywords in the content. The results of this study show that the combination of CBF and TF-IDF methods can improve the accuracy of recommendation in Facebook timeline, resulting in a more convenient and relevant user experience.
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Manasijević, D., Živković, D., Arsić, S., & Milošević, I. (2016). Exploring students’ purposes of usage and educational usage of Facebook. Computers in Human Behavior, 60, 441-450.
Kosinski, M., Matz, S. C., Gosling, S. D., Popov, V., & Stillwell, D. (2015). Facebook as a research tool for the social sciences: Opportunities, challenges, ethical considerations, and practical guidelines. American Psychologist, 70(6), 543–556.
Shrivastava, R., & Sisodia, D. S. (2019). Product recommendations using textual similarity based learning models. In 2019 International Conference on Computer Communication and Informatics (ICCCI) (pp. 1–7). Coimbatore, India.
Shahzad, Q., & Ramsha, A. (2018). Text Mining: Use of TF-IDF to Examine the Relevance of Words to Documents. International Journal of Computer Applications ER, 181(1), 25.
Javed, U., Shaukat, K., Hameed, I. A., Iqbal, F., Alam, T. M., & Luo, S. (2021). A review of content-based and context-based recommendation systems. International Journal of Emerging Technologies in Learning (iJET), 16(3), 274–306.
Steck, H., Baltrunas, L., Elahi, E., Liang, D., Raimond, Y., & Basilico, J. (2021). Deep learning for recommender systems: A Netflix case study. AI Magazine, 42(3), 7–18.
Gomez-Uribe, C. A., & Hunt, N. (2015). The Netflix recommender system: Algorithms, business value, and innovation. ACM Transactions on Management Information Systems (TMIS), 6(4), 1–19.
Mondi, R. H., Wijayanto, A., & Winarno, W. (2019). Recommendation system with content-based filtering method for culinary tourism in Mangan application. ITSMART: Jurnal Teknologi dan Informasi, 8(2), 65–72.
Chiny, M., Chihab, M., Bencharef, O., & Chihab, Y. (2022). Netflix recommendation system based on TF-IDF and cosine similarity algorithms. In International Conference on Big Data, Machine Learning, and Applications (BML) (pp. 15–20). Rabat, Morocco.
Sihananto, A. N., Sari, A. P., Khariono, H., Fernanda, R. A., & Wijaya, D. C. M. (2022). Implementasi metode K-Means untuk pengelompokan kasus Covid-19 tingkat provinsi di Indonesia. Jurnal Informatika dan Sistem Informasi, 3(1), 76–85.
Septiani, D., & Isabela, I. (2022). Analisis term frequency inverse document frequency (tf-idf) dalam temu kembali informasi pada dokumen teks. Sistem dan Teknologi Informasi Indonesia (SINTESIA), 1(2), 81–88.
Liu, Y., Xu, Q., & Tang, Z. (2019). Research on text classification method based on PTF-IDF and cosine similarity. In 2019 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS) (pp. 205–208). Shanghai, China.
Saraswathi, K., Mohanraj, V., Suresh, Y., & Senthilkumar, J. (2022). Deep learning enabled social media recommendation based on user comments. Computer Systems Science & Engineering, 44(2), 1691.
Pramesti, D. A. P. D., & Santiyasa, I. W. (2022). Penerapan metode content-based filtering dalam sistem rekomendasi video game. Jurnal Nasional Teknologi Informasi dan Aplikasinya, 1(1), 229–234.
Turcotte, J., York, C., Irving, J., Scholl, R. M., & Pingree, R. J. (2015). News recommendations from social media opinion leaders: Effects on media trust and information seeking. Journal of Computer-Mediated Communication, 20(5), 520–535.