Analisis Sentimen Ulasan Pengguna Aplikasi Disney+ Hotstar Menggunakan Naive Bayes Classifier
Main Article Content
Abstract
This research suggests an approach using Naive Bayes classification to analyze the sentiment from the user reviews of the Disney+ Hotstar application on the Google Play Store. Review data is processed using the Naive Bayes classification method. This aims to create a text representation then Naive Bayes will group it into positive, negative or neutral categories. The expression results show that this model is able to overcome problems in terms of sentiment analysis with good accuracy. Evaluation uses several standards, namely accuracy, precision, recall, and F1-Score.With accuracy results of 81,6 %, precision of 58 %, recall of 83%, and f1-score of 68%. The results of this research shows useful information for application developers in improving the quality of their products. Apart from that, they can also see public sentiment towards the Disney+ Hotstar application. The research results can also be adapted to analyze sentiment on other applications available on digital platforms and have a positive impact on technological progress.
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Sari, A., Prasetya, D. A., Al Haromainy, M. M., Aditiawan, F. P., Sihananto, A. N., & SJ Saputra, W. (2022, November 29). Analisis Faktor Kesuksesan Penggunaan eBelajar Menggunakan Metode Hot-Fit di STIKI Malang. Prosiding Seminar Nasional Sains Data, 2(1), 92-102.
Danuri, Muhamad & Informatika, Manajemen & Teknologi, Jakarta & Semarang, Cipta. (2020). Perkembangan Dan Transformasi Teknologi Digital. 15. 116-123.
Ananda, Rizky (2021) Analisis Kualitas Layanan Pada Aplikasi Disney+ Hotstar Terhadap Kepuasan Pengguna Dengan Menggunakan Metode E-Servqual. Skripsi thesis, UNAMA.
Rahman, I. M., Hasanah, A.N., & Heryana, N. (2024) Analisis Sentimen Ulasan Pengguna Aplikasi Samsat Digital Nasional (Signal) Dengan Menggunakan Metode Naïve Bayes Classifier. Jitet (Jurnal Informatika dan Teknik Elektro Terapan), 964.
Raditya, M. F., Pradekso, T., & Dwiningtyas, H. (2022). The Influence of Perceived Ease of Use, Perceived Price Value of Bundling Promotion, and Perceived Attractiveness of Original Contents on Disney+ Hotstar Subscription Intention. E-Journal UNDIP, 1-2
Fransiska, S., Rianto., & Gufroni, A. I. (2020) Sentiment Analysis Provider by.U on Google Play Store Reviews with TF-IDF and Support Vector Machine (SVM) Method. Scientific Journal of Informatics, 203
Putri, D.D., Nama, G.F. and Sulistiono, W.E., (2022). Analisis Sentimen Kinerja Dewan Perwakilan Rakyat (DPR) Pada Twitter Menggunakan Metode Naive Bayes Classifier. Jurnal Informatika dan Teknik Elektro Terapan, 10(1).
Macfud, A. Z., Kusuma, A. P., & Puspitasari, W. D. (2023). Analisis Algoritma Naive Bayes Classifier (Nbc) Pada Klasifikasi Tingkat Minat Barang Di Toko Violet Cell. Jati (Jurnal Mahasiswa Teknik Informatika), 87-88
Nurian, A., Ma’arif, M. S., & Rozikin, C. (2022). Analisis Sentimen Pengguna Aplikasi Shopee Pada Situs Google Play Menggunakan Naive Bayes Classifier. Jitet (Jurnal Informatika dan Teknik Elektro Terapan). 97-103.
Maulana, R. Voutama, A. & Ridwan, T. (2023). Analisis Sentimen Ulasan Aplikasi Mypertamina Pada Google Play Store Menggunakan Algoritma NBC. Jurnal Teknologi Terpadu. 42-48
Septiani, D. & Isabela, I. 2022. Analisis Term Frequency Inverse Document Frequency (Tf-Idf) Dalam Temu Kembali Informasi Pada Dokumen Teks. SINTESIA: Jurnal Sistem dan Teknologi Informasi Indonesia. 81-88.
Siregar, N. C., Siregar, R. R. A., & Sudirman, M. Y. D.(2020). Implementasi Metode Naive Bayes Classifier (NBC) Pada Komentar Warga Sekolah Mengenai Pelaksanaan Pembelajaran Jarak Jauh (PJJ). Jurnal Teknologia. 102-110.
Albab, M. U., Karuniawati, Y., & Fawaiq, M. N. (2023). Optimization of the Stemming Technique on Text preprocessing President 3 Periods Topic. Jurnal TRANSFORMATIKA. 1-12.
Anwar, S. M., Subroto, I. M. I., & Mulyono, S.(2019). Sistem Pencarian E-Journal Menggunakan Metode Stopword Removal Dan Stemming Berbasis Android. Prosiding KONFERENSI ILMIAH MAHASISWA UNISSULA (KIMU) 2. 58-70
Muhammad Iqbal Fikri R. A., Amartharizqi, M. R. ., Sofi, F. A. ., & Sari, A. P. . (2023). Sistem Rekomendasi Musik Berdasarkan Preferensi Pengguna Dengan Menggunakan Metode Natural Language Processing (NLP). Prosiding Seminar Nasional Informatika Bela Negara, 3, 129–133. Retrieved from https://santika.upnjatim.ac.id/submissions/index.php/santika/article/view/213