Implementasi Multilayer Perceptron untuk Klasifikasi Berita Hoax dalam Media Sosial

Main Article Content

Hervilla Amanda
Nayla Faiza
Lailan Sofinah Harahap

Abstract

The very fast dissemination of information via social media in the current digital era has facilitated the spread of fake news or hoaxes. Hoax news is false information, often created deliberately to spread or manipulate public opinion. The spread of hoaxes on social media can have serious impacts, such as public unrest. Therefore, automatic detection of hoax news is very important to maintain the integrity of information circulating in society. This research aims to implement the Multilayer Perceptron (MLP) algorithm in classifying news as "hoax" or "not hoax". The MLP algorithm works by learning from training data containing labeled news text. Based on certain patterns and features, this model is expected to be able to detect whether a piece of news is a hoax or not. The implementation of Perceptron for hoax news classification aims to provide a system that can help social media users filter information, so that it can support a healthier and more trustworthy social media ecosystem. This research uses data collection methods from various social media and news sites, data preprocessing, MLP model formation, system implementation, and model evaluation. The implementation results show that the MLP model is able to classify hoax news with an accuracy of 63.1%. It is hoped that these findings can contribute to the development of accurate and efficient hoax detection technology.

Article Details

How to Cite
Amanda, H., Faiza, N. ., & Sofinah Harahap, L. . (2024). Implementasi Multilayer Perceptron untuk Klasifikasi Berita Hoax dalam Media Sosial. Journal of Multidisciplinary Inquiry in Science, Technology and Educational Research, 2(1), 51–63. https://doi.org/10.32672/mister.v2i1.2336
Section
Articles
Author Biographies

Hervilla Amanda, Universitas Islam Negeri Sumatra Utara

Program Studi Ilmu Komputer, Fakultas Sains dan Teknologi,Universitas Islam Negeri Sumatra Utara, Medan, Indonesia1,2

Nayla Faiza, Universitas Islam Negeri Sumatra Utara

Program Studi Ilmu Komputer, Fakultas Sains dan Teknologi,Universitas Islam Negeri Sumatra Utara, Medan, Indonesia1,2

Lailan Sofinah Harahap, Universitas Muhammadiyah Sumatra Utara

Program Studi Teknologi Informasi, Fakultas Ilmu Komputer dan Teknologi Informasi, Universitas Muhammadiyah Sumatra Utara, Medan, Indonesia3

References

Ahmad, T. &. (2020). Deep learning for fake news detection in social media. Neural Computing and Applications, 32(17),, 13173-13187.

Aprilia, S. N. (2023). Text preprocessing dan klasifikasi untuk deteksi hoax pada media sosial menggunakan deep learning. Jurnal Teknologi Informasi dan Ilmu Komputer, 8(2),, 355-364.

Calvo, R. A. (2021). Natural Language Processing in Mental Health Applications using Non-clinical Texts. Natural Language Engineering,27(2), 1-37.

Fadillah, A. P. (2024). Implementasi metode Multilayer Perceptron untuk klasifikasi berita hoax berbahasa Indonesia. Indonesian Journal of Computing, 7(1), 45-56.

Graves, A. &. (2022). Neural networks for machine learning. Advances in Neural Information Processing Systems, 35, 2148-2156.

Hartanto, R. &. (2023). Perbandingan Algoritma Machine Learning untuk Deteksi Berita Hoax. Jurnal Teknik Informatika dan Sistem Informasi, 9(2, 1232-1245.

Hassan, A. &. (2021). Deep learning approach for fake news detection using convolutional neural networks. In 2021 International Conference on Computing and Communications Applications and Technologies (I3CAT) , 1-6.

Kumar, S. &. (2020). False information on web and social media: A survey. arXiv preprint arXiv:2002.08024., 1-20.

Liu, Y. &. (2020). Early detection of fake news on social media through propagation path classification with recurrent and convolutional networks. In Proceedings of the AAAI Conference on Artificial Intelligence, 774-781.

Nasution, M. K. (2024). Deep learning untuk deteksi hoax: Studi komparatif berbagai arsitektur neural network. Jurnal Informatika dan Komputer, 6(1), 23-34.

Pratama, B. Y. (2023). Improving hoax detection in Indonesian text using multilayer perceptron with attention mechanism. Journal of Computer Science, 19(3),, 341-352.

Pratiwi, I. Y. (2021). Study of hoax news detection using naive bayes classifier in Indonesian language. In 2021 International Conference on Artificial Intelligence and Big Data Analytics (ICAIBDA), 1-5.

Putra, I. W. (2023). Optimasi hyperparameter pada neural network untuk klasifikasi berita hoax. urnal Teknologi Informasi dan Komunikasi, 12(20), 89-98.

Siswanto, E. &. (2024). Deteksi hoax menggunakan deep learning: Implementasi dan analisis performa. JATISI (Jurnal Teknik Informatika dan Sistem Informasi), 67-78.

Wang, W. Y. (2020). "Liar, Liar Pants on Fire": A New Benchmark Dataset for Fake News Detection. arXiv preprint arXiv:2007.07725, 1-8.

Widodo, A. W. (2024). Implementasi deep learning untuk klasifikasi berita hoax berbasis konten dan konteks. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 6(1), 234-243.

Zhang, X. &. (2020). An overview of online fake news: Characterization, detection, and discussion. Information Processing & Management, 57(2, 102025.

Most read articles by the same author(s)