Penerapan Multi-Layer Perceptron untuk Prediksi Durasi Tidur Berdasarkan Faktor Kebiasaan Harian
Main Article Content
Abstract
This study applies a Multi Layer Perceptron (MLP), a type of Artificial Neural Network (ANN), to predict sleep duration based on daily habits, including screen time, exercise, and caffeine intake. The methodology involves data preprocessing, MLP architecture design, hyperparameter tuning using Grid Search, and model evaluation. The final model configuration includes two hidden layers with 10 neurons each, utilizing the tanh activation function and adam optimizer with a learning rate of 0.1. The model evaluation on test data shows promising accuracy, with a Mean Squared Error (MSE) of 0.065 and Mean Absolute Error (MAE) of 0.204. These results indicate that the MLP model effectively captures complex patterns in the dataset and provides accurate sleep duration predictions. However, certain samples showed significant prediction discrepancies, suggesting the potential influence of unobserved factors, such as health conditions or stress. Further research could improve model performance by including additional features or exploring alternative models like Random Forest or Gradient Boosting.
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Alameer, Z., Elaziz, M. A., Ewees, A. A., Ye, H., & Jianhua, Z. (2019). Forecasting gold price fluctuations using improved multilayer perceptron neural network and whale optimization algorithm. Resources Policy, 61(September 2018), 250–260. https://doi.org/10.1016/j.resourpol.2019.02.014
Anggelia, D. A., Kusmaedi, N., & Indonesia, U. P. (2017). Hubungan Aktivitas Fisik Dengan Indeks. 01, 227–234.
Bagheri, S., Taridashti, S., Farahani, H., Watson, P., & Rezvani, E. (2023). Multilayer perceptron modeling for social dysfunction prediction based on general health factors in an Iranian women sample. Frontiers in Psychiatry, 14(December), 1–12. https://doi.org/10.3389/fpsyt.2023.1283095
Bonanni, O., Mullen, M., Falcon, T., Huang, H., Lowry, A., & Perron, T. (2022). Caffeine: Effects on sleep and academic performance in college students. British Journal of Child Health, 3(6), 281–285. https://doi.org/10.12968/chhe.2022.3.6.281
Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 13-17-August-2016, 785–794. https://doi.org/10.1145/2939672.2939785
Columbia University Department of Psychiatry. (2022). How Sleep Deprivation Impacts Mental Health. Columbia University Department of Psychiatry. https://www.columbiapsychiatry.org/news/how-sleep-deprivation-affects-your-mental-health
Fadhilah, N., Salam, A., & Trisasmita, L. (2023). Gambaran kebiasaan sarapan dan durasi tidur pada remaja status gizi lebih di smp muhammadiyah limbung. The Journal of Indonesian Community Nutrition, 12(2), 93–105.
Fitriyani, Fathurrahman, A., & Mandala, Z. (2024). Gambaran Kualitas Tidur Pada Mahasiswa Pendidikan ProfesiDokter Di Rumah Sakit Pertamina Bintang Amin. Jurnal Ilmu Kedokteran dan Kesehatan, 11(6), 2549–4864. http://ejurnalmalahayati.ac.id/index.php/kesehatan
Frank, S., Gonzalez, K., Lee-Ang, L., Young, M. C., Tamez, M., & Mattei, J. (2017). Diet and sleep physiology: Public health and clinical implications. Frontiers in Neurology, 8(AUG), 1–9. https://doi.org/10.3389/fneur.2017.00393
Goodfellow, I., Begio, Y., & Courville, A. (2019). Deep learning. Nature, 29(7553), 1–73.
Gulo, S. H., & Lubis, A. H. (2024). Penerapan Multi-Layer Perceptron untuk Mengklasifikasi Penduduk Kurang Mampu. Explorer, 4(2), 51–59.
Kilic, O., Saylam, B., & Durmaz Incel, O. (2023). Sleep Quality Prediction from Wearables using Convolution Neural Networks and Ensemble Learning. ACM International Conference Proceeding Series, 116–120. https://doi.org/10.1145/3589883.3589900
Kudrnáčová, M., & Kudrnáč, A. (2023). Better sleep, better life? testing the role of sleep on quality of life. PLoS ONE, 18(3 March), 1–18. https://doi.org/10.1371/journal.pone.0282085
Nugraha, W., & Sasongko, A. (2022). Hyperparameter Tuning pada Algoritma Klasifikasi dengan Grid Search Hyperparameter Tuning on Classification Algorithm with Grid Search. SISTEMASI: Jurnal Sistem Informasi, 11(2), 391–401. http://sistemasi.ftik.unisi.ac.id
Nurdina, A., Aryani, D., Venita, E., & Astiti, S. (2022). Analisis Peramalan Permintaan Golang-Galing dalam Memaksimalkan Manajemen Rantai Pasok Menggunakan Metode Weighted Moving Average. JURIKOM (Jurnal Riset Komputer), 9(4), 1167. https://doi.org/10.30865/jurikom.v9i4.4551
Okano, K., Kaczmarzyk, J. R., Dave, N., Gabrieli, J. D. E., & Grossman, J. C. (2019). Sleep quality, duration, and consistency are associated with better academic performance in college students. npj Science of Learning, 4(1). https://doi.org/10.1038/s41539-019-0055-z
Pardede, D., Hayadi, B. H., & Iskandar. (2022). Kajian Literatur Multi Layer Perceptron Seberapa Baik Performa Algoritma Ini. Journal of Ict Aplications and System, 1(1), 23–35. https://doi.org/10.56313/jictas.v1i1.127
Putri, P. A. (2022). Hubungan Pola Konsumsi Makanan Tinggi Kalori dan Kopi, Durasi Tidur, dan Tingkat Stress dengan Status Gizi Pada Mahasiswa Tingkat Akhir. Media Gizi Kesmas, 11(02), 464–474.
Rahmawati, E., Firdaningrum, N. E., & Agoes, A. (2021). Hubungan antara Durasi Tidur dengan Asupan Makan, Aktivitas Fisik dan Kejadian Obesitas Pada Mahasiswa Program Studi Pendidikan Dokter UIN Maulana Malik Ibrahim Malang. Journal of Islamic Medicine, 5(1), 9–19. https://doi.org/10.18860/jim.v5i1.11674
Ramar, K., Malhotra, R. K., Carden, K. A., Martin, J. L., Abbasi-Feinberg, F., Aurora, R. N., Kapur, V. K., Olson, E. J., Rosen, C. L., Rowley, J. A., Shelgikar, A. V., & Trotti, L. M. (2021). Sleep is essential to health: An American Academy of Sleep Medicine position statement. Journal of Clinical Sleep Medicine, 17(10), 2115–2119. https://doi.org/10.5664/jcsm.9476
Rede, A. (2024). Tutorial on Hyperparameter Tuning Using scikit-learn. Georgia Tech. https://sites.gatech.edu/omscs7641/2024/02/16/tutorial-on-hyperparameter-tuning-using-scikit-learn/
Sara, K., Risma, R., & Sutisna, N. (2020). Hubungan Durasi Tidur dan Perilaku Sedentari dengan Body Mass Index pada Siswa SMA Negeri 3 Ciamis. Jurnal Terapan Ilmu Keolahragaan, 5(2), 120–127. https://doi.org/10.17509/jtikor.v5i2.27960
Sari, D. (2024). Prediksi Gangguan Tidur pada Sleep Health and Lifestyle Menggunakan Support Vector Machine dan Neural Network. JAVIT : Jurnal Vokasi Informatika, 36–42. https://doi.org/10.24036/javit.v4i1.168
Schmidhuber, J. (2015). Deep Learning in neural networks: An overview. Neural Networks, 61, 85–117. https://doi.org/10.1016/j.neunet.2014.09.003
Sharma, P. (2023). One Hot Encoding and Label Encoding Explained. tutorialspoint. https://www.tutorialspoint.com/one-hot-encoding-and-label-encoding-explained
Singh, D., & Singh, B. (2020). Investigating the impact of data normalization on classification performance. Applied Soft Computing, 97(xxxx), 105524. https://doi.org/10.1016/j.asoc.2019.105524
Wulansih, N. C., Raisa Zharfan, F., Wikrama Aurelia Biyang, A., Ratri Anggraini, M., & Kharin Herbawani, C. (2024). Tinjauan Literatur: Dampak Durasi dan Kualitas Tidur yang Buruk Pada Kesehatan Tubuh Usia Produktif Literature Review: The Impact of Poor Sleep Duration and Quality on Health in Productive Age. 12(1), 71–82.