Konversi Limbah Biomassa Tandan Kosong Sawit menjadi Energi Panas

Main Article Content

Erdiwansyah
Muhtadin
Asri Gani
Muhammad Faisal
Muhammad Nizar
Yeggi Darnas

Abstract

Biomass waste from palm oil mill processing in Indonesia, especially on the island of Sumatra one of which is Aceh Province, is currently quite abundant and has not been managed optimally. This biomass waste can be converted into solid energy, which can be used as energy for biomass power plants. The aim of this research is specifically to convert biomass waste into solid energy. This research applies Simultaneous compression with heating as a fuel production method. The biomass waste used as solid fuel production material is empty palm oil bunches. The results of the fuel production process based on palm oil biomass waste show that the energy value reaches 26.80 MJ/kg. The carbon content in the produced fuel reaches 47.56%, with a low ash content of 6.70%. Calculations of the density of biomass-based fuel before and after production show an average of 1.42 grams/cm3. The results of tests carried out on fuel produced using palm oil biomass waste show high energy potential that can be used to reduce dependence on the use of coal.

Article Details

How to Cite
[1]
Erdiwansyah, Muhtadin, Asri Gani, Muhammad Faisal, Muhammad Nizar, and Yeggi Darnas, “Konversi Limbah Biomassa Tandan Kosong Sawit menjadi Energi Panas”, JSE, vol. 9, no. 1, pp. 8002 –, Dec. 2023.
Section
Articles

References

A. Gani et al., “Proximate and ultimate analysis of corncob biomass waste as raw material for biocoke fuel production,” Case Stud. Chem. Environ. Eng., vol. 8, p. 100525, 2023, doi: https://doi.org/10.1016/j.cscee.2023.100525.

A. Gani et al., “Comparative analysis of HHV and LHV values of biocoke fuel from palm oil mill solid waste,” Case Stud. Chem. Environ. Eng., vol. 9, p. 100581, 2024, doi: https://doi.org/10.1016/j.cscee.2023.100581.

A. Gani, E. Erdiwansyah, E. Munawar, M. Faisal, and M. Reza, “Pengaruh Pemberian Tekanan dan Pemanasan Terhadap Densitas Bahan Bakar (Bio-Coke) Berbasis Biomassa Bonggol Jagung,” J. Serambi Eng., vol. 8, no. 3, 2023, doi: https://doi.org/10.32672/jse.v8i3.6101.

Erdiwansyah, R. Mamat, M. S. M. Sani, and K. Sudhakar, “Renewable energy in Southeast Asia: Policies and recommendations,” Sci. Total Environ., 2019, doi: https://doi.org/10.1016/j.scitotenv.2019.03.273.

E. Erdiwansyah et al., “Investigation of availability, demand, targets, and development of renewable energy in 2017–2050: a case study in Indonesia,” Int. J. Coal Sci. Technol., vol. 8, pp. 1–17, 2021, doi: https://doi.org/10.1007/s40789-020-00391-4.

Erdiwansyah, Mahidin, R. Mamat, M. S. M. Sani, F. Khoerunnisa, and A. Kadarohman, “Target and demand for renewable energy across 10 ASEAN countries by 2040,” Electr. J., vol. 32, no. 10, p. 106670, Dec. 2019, doi: 10.1016/J.TEJ.2019.106670.

E. Erdiwansyah et al., “Biomass and wind energy as sources of renewable energy for a more sustainable environment in Indonesia: A review,” Arch. Environ. Prot., vol. 48, no. 3, pp. 57–69, 2022, doi: 10.24425/aep.2022.142690.

Erdiwansyah, A. Gani, N. MH, R. Mamat, and R. E. Sarjono, “Policies and laws in the application of renewable energy Indonesia: A reviews,” AIMS Energy, vol. 10, no. 1, pp. 23–44, 2022, doi: 10.3934/energy.2022002.

M. Azhar and D. A. Satriawan, “Implementasi kebijakan energi baru dan energi terbarukan dalam rangka ketahanan energi nasional,” Adm. Law Gov. J., vol. 1, no. 4, pp. 398–412, 2018.

S. A. Arsita, G. E. Saputro, and S. Susanto, “Perkembangan kebijakan energi nasional dan energi baru terbarukan Indonesia,” J. Syntax Transform., vol. 2, no. 12, pp. 1779–1788, 2021.

Erdiwansyah, Mahidin, H. Husin, Nasaruddin, M. Zaki, and Muhibbuddin, “A critical review of the integration of renewable energy sources with various technologies,” Prot. Control Mod. Power Syst., vol. 6, no. 1, p. 3, 2021, doi: 10.1186/s41601-021-00181-3.

S. Erdogan, U. K. Pata, and S. A. Solarin, “Towards carbon-neutral world: The effect of renewable energy investments and technologies in G7 countries,” Renew. Sustain. Energy Rev., vol. 186, p. 113683, 2023, doi: https://doi.org/10.1016/j.rser.2023.113683.

O. T. Chiwaridzo, “Harnessing renewable energy technologies for energy independence within Zimbabwean tourism industry: A pathway towards sustainability,” Energy Sustain. Dev., vol. 76, p. 101301, 2023, doi: https://doi.org/10.1016/j.esd.2023.101301.

K. Dong, S. Yang, J. Wang, and X. Dong, “Revisiting energy justice: Is renewable energy technology innovation a tool for realizing a just energy system?,” Energy Policy, vol. 183, p. 113820, 2023, doi: https://doi.org/10.1016/j.enpol.2023.113820.

Y.-M. Li, K. Khan, A. A. Farooque, and M. Murshed, “Diffusion of technology and renewable energy in the G10 countries: A panel threshold analysis,” Energy Strateg. Rev., vol. 49, p. 101115, 2023, doi: https://doi.org/10.1016/j.esr.2023.101115.

A. A. Hassan and K. El-Rayes, “Optimal use of renewable energy technologies during building schematic design phase,” Appl. Energy, vol. 353, p. 122006, 2024, doi: https://doi.org/10.1016/j.apenergy.2023.122006.

M. G. Fikru and J. W. A. Azure, “Renewable energy technologies and carbon capture retrofits are strategic complements,” Technol. Forecast. Soc. Change, vol. 196, p. 122850, 2023, doi: https://doi.org/10.1016/j.techfore.2023.122850.

X. Wang, L.-W. Fan, and H. Zhang, “Policies for enhancing patent quality: Evidence from renewable energy technology in China,” Energy Policy, vol. 180, p. 113660, 2023, doi: https://doi.org/10.1016/j.enpol.2023.113660.

K. A. Stevens, T. Tang, and E. Hittinger, “Innovation in complementary energy technologies from renewable energy policies,” Renew. Energy, vol. 209, pp. 431–441, 2023, doi: https://doi.org/10.1016/j.renene.2023.03.115.

P. Ibarra-Gonzalez, B.-G. Rong, J. G. Segovia-Hernández, and E. Sánchez-Ramírez, “Multi-objective optimization methodology for process synthesis and intensification: Gasification-based biomass conversion into transportation fuels,” Chem. Eng. Process. - Process Intensif., vol. 162, p. 108327, 2021, doi: https://doi.org/10.1016/j.cep.2021.108327.

J. P. M. Sanders et al., “Process intensification in the future production of base chemicals from biomass,” Chem. Eng. Process. Process Intensif., vol. 51, pp. 117–136, 2012, doi: https://doi.org/10.1016/j.cep.2011.08.007.

P. Ibarra-Gonzalez, C.-E. Torres-Ortega, and B.-G. Rong, “A Dual Methodology for Synthesis of Woody Biomass to Liquid (BtL) Thermochemical Conversion Routes and Bio-oil Upgrading,” in 27 European Symposium on Computer Aided Process Engineering, vol. 40, A. Espuña, M. Graells, and L. B. T.-C. A. C. E. Puigjaner, Eds. Elsevier, 2017, pp. 679–684. doi: https://doi.org/10.1016/B978-0-444-63965-3.50115-X.

X. Liu et al., “Heterogeneous photocatalytic conversion of biomass to biofuels: A review,” Chem. Eng. J., vol. 476, p. 146794, 2023, doi: https://doi.org/10.1016/j.cej.2023.146794.

Y. Wang and J. J. Wu, “Thermochemical conversion of biomass: Potential future prospects,” Renew. Sustain. Energy Rev., vol. 187, p. 113754, 2023, doi: https://doi.org/10.1016/j.rser.2023.113754.