Perbandingan Akurasi Metode ANN dengan FTS Model Chen, Cheng, dan Marcov Chain terhadap Peramalan Harga Penutupan Saham Zoom Video Communication

Main Article Content

Khanifah Khanifah
Putriaji Hendikawati

Abstract

Stock price forecasting has become one of the important areas after the COVID-19 pandemic. This study aims to compare the accuracy of forecasting the closing price of Zoom Video Communication, Inc. shares using the Artificial Neural Network (ANN) Backpropagation and Fuzzy Time Series (FTS) methods with the Chen, Cheng, and Marcov Chain models. The data used in this study includes the closing price of shares from the period July 5, 2019 to January 4, 2024. Each method is evaluated using accuracy metrics such as RMSE, MSE, and MAPE. The results of the analysis show that ANN has a lower error rate than the FTS model, especially in predicting the closing price of Zoom Video Communication, Inc. The ANN method has proven to be more reliable in providing more accurate predictions.

Article Details

How to Cite
Khanifah, K., & Hendikawati, P. (2024). Perbandingan Akurasi Metode ANN dengan FTS Model Chen, Cheng, dan Marcov Chain terhadap Peramalan Harga Penutupan Saham Zoom Video Communication. Journal of Multidisciplinary Inquiry in Science, Technology and Educational Research, 2(1b), 1615–1633. https://doi.org/10.32672/mister.v2i1b.2585
Section
Articles
Author Biographies

Khanifah Khanifah, Universitas Negeri Semarang

Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Semarang, Semarang, Indonesia

Putriaji Hendikawati, Universitas Negeri Semarang

Statistika Terapan dan Komputasi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Semarang, Semarang, Indonesia

References

Adebiyi, A. A., Adewumi, A. O., & Ayo, C. K. (2014). Comparison of ARIMA and Artificial Neural Networks Models for Stock Price Prediction. Journal of Applied Mathematics, 2014(1), 614342. https://doi.org/10.1155/2014/614342

Arkov, V., Kulikov, G. G., & Breikin, T. V. (1999). Fuzzy markov modeling in automatic control of complex dynamic systems. Manufacturing Systems, 287–289.

Chu, H. H., Chen, T. L., Cheng, C. H., & Huang, C. C. (2009). Fuzzy dual-factor time-series for stock index forecasting. Expert Systems with Applications, 36(1), 165–171. https://doi.org/10.1016/J.ESWA.2007.09.037

Daily Social. https://dailysocial.id/post/apa-itu-zoom

Dika Permana. (2022, October 25). Zoom Meeting: Pengertian, Kelebihan dan Cara Menggunakannya. Tedas.Id. https://tedas.id/teknologi/tutorial/zoom-meeting/

Dwi Hadya, J. (2020). Zoom Jadi Aplikasi Favorit untuk Komunikasi Virtual Selama Pandemi. Databoks. https://databoks.katadata.co.id/datapublish/2020/10/05/zoom-jadi-aplikasi-favorit-untuk-komunikasi-virtual-selama-pandemi

finamafazah, Maharani, B. T. D., Anistya, M., & Khaulasari, H. (2023). Prediksi Harga Saham PT Bank BCA Menggunakan Metode Artificial Neural Network. Jurnal Algebra, 4(2), 119–126. https://doi.org/10.29080/ALGEBRA.V4I2.318

Gershenson, C. (2003). (2003). Artificial Neural Networks for Beginners. https://arxiv.org/abs/cs/0308031v1

Haryono, A., Satrio, Y. D., Munir, S., & Handayani, S. (2020). Financial Literacy Suplemen Buku Ekonomi SMA.

Hayati, E., & Novitasari, D. A. (2022). Peramalan Harga Saham Zoom Video Communications, Inc di Masa Pandemi COVID-19. Seminar Nasional Riset Ekonomi Dan Bisnis, 1(1). https://jurnalekonomi.unisla.ac.id/index.php/Semnas/article/view/1199

Lukman, W., & Malik, D. . (2020). COVID-19: Tinjauan Sejarah Virus Dunia & Kebijakan Hukum Penanganan Covid-19 di Indonesia. 65. https://books.google.co.id/books?hl=en&lr=&id=PRBNEAAAQBAJ&oi=fnd&pg=PA3&dq=awal+mula+%22covid+19%22&ots=q5cUViEZX8&sig=Lb4XSrRsxy-p3wb3jkDj4Yz-EA0&redir_esc=y#v=onepage&q=awal mula %22covid 19%22&f=false

Nugroho, K. (2016). MODEL ANALISIS PREDIKSI MENGGUNAKAN METODE FUZZY TIME SERIES. Jurnal Ilmiah Infokam, 12(1). https://doi.org/10.53845/INFOKAM.V12I1.91

Safitri, Y., Wahyuningsih, S., & Goejantoro, R. (2018). Peramalan Dengan Metode Fuzzy Time Series Markov Chain. EKSPONENSIAL, 9(1), 51–58. http://jurnal.fmipa.unmul.ac.id/index.php/exponensial/article/view/275

Song, Q., & Chissom, B. S. (1994). Forecasting enrollments with fuzzy time series - part II. In Fuzzy Sets and Systems: Vol. 62]]]]]]]] (Issue 1, pp. 1–8). https://doi.org/10.1016/0165-0114(94)90067-1

Tauryawati, M., Tauryawati, M. L., & Irawan, M. I. (2014). Perbandingan Metode Fuzzy Time Series Cheng dan Metode Box-Jenkins untuk Memprediksi IHSG. Jurnal Sains Dan Seni ITS, 3(2), A34–A39. https://doi.org/10.12962/j23373520.v3i2.7985

Tsaur, R. C., O Yang, J. C., & Wang, H. F. (2005). Fuzzy relation analysis in fuzzy time series model. Computers & Mathematics with Applications, 49(4), 539–548. https://doi.org/10.1016/J.CAMWA.2004.07.014

Tyagi, A. K., & Abraham, A. (2022). Recurrent Neural Networks. ROUTLEDGE.

Wang, W. (2018). A big data framework for stock price forecasting using fuzzy time series. Multimedia Tools and Applications, 77(8), 10123–10134. https://doi.org/10.1007/S11042-017-5144-5/TABLES/4

winarso, bambang. (2021). Apa itu Zoom, Fitur dan Cara Menggunakannya.

Zoom Video Communications, Inc. (ZM) stock historical data & charts. Yahoo Finance. https://finance.yahoo.com/quote/ZM/history/.