Perbandingan Akurasi Algoritma Principal Component Analysis Dengan Algoritma Convolutional Neural Network Dalam Pengenalan Wajah
Main Article Content
Abstract
Facial recognition technology is used in various fields such as criminal identification, security purposes, finding missing people, diagnosing diseases, forensic investigations, identifying people on social media platforms, opening mobile phones, access control of meeting rooms, bank vaults. This paper presents a performance comparison between PCA and CNN algorithms. The aim of this research is to test the classification and compare the accuracy of PCA and CNN algorithms in face recognition. The method is to test the classification of Euclidean distance weights and compare performance tests which include; precision, recall and accuracy. The results showed that the accuracy of the PCA algorithm predicted TP by 100%, while the CNN algorithm predicted TP by 82%, while FN predicted 0. The recall performance on the PCA algorithm predicted TP by 100%, while on the CNN algorithm the recall performance predicted TP by 82%. Accuracy in the PCA algorithm is known that the TP prediction result is 100%, where TN, FN and FP are 0, while the accuracy performance in the CNN algorithm, TP is 82%, FN is 18%, TN and FP are 0.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Sunardi , Anton Yudhana , Muhamad Alwi Talib, ” Perancangan Sistem Pengenalan Wajah untuk Keamanan Ruangan Menggunakan Metode Local Binary Pattern Histogram”, JTE p-ISSN: 2086‐9479 e-ISSN: 2621-853Vol. 13. No. 02,: 123-12, Mei 2022.
. Nyoman Tri Anindia Putra , Ida Bagus Gede Dwidasmara , ” I Gede Santi Astawa”, Perancangan Dan Pengembangan Sistem Absensi Realtime Melalui Metode Pengenalan Wajah ”, Jurnal Sains dan Teknologi, ISSN: 2303-3142 Vol. 3, No. 2, Oktober 2014.
N. Sharma, V. Jain, and A. Mishra, “An Analysis Of Convolutional Neural Networks For Image Classification,” Procedia Comput. Sci., vol. 132, pp. 377–384, Jan. 2018
Irzal Ahmad Sabilla, Arsitektur Convolutional Neural Network (Cnn) Untuk Klasifikasi Jenis Dan Kesegaran Buah Pada Neraca Buah, Departemen Teknik Informatika Fakultas Teknologi Elektro dan Informatika Cerdas Institut Teknologi Sepuluh Nopember 2020.
S. Hijazi, R. Kumar and C. Rowen, “Using Convolutional Neural Networks for Image A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” NeurIPS Proceedings, 2012. Recognition,” Remote Sens. pp 7, 2015 [5] F. F. Chamasemani, “Multi-class Support Vector Machine ( SVM ) classifiers – An Application in Hypothyroid detection and Classification,” 2011 Sixth Int. Conf. BioInspired Computer. Theor. Appl., pp. 351–356, 2011
Z. Guo, Q. Chen, G. Wu, Y. Xu, R. Shibasaki, and X. Shao, “Village Building Identification Based on Ensemble Convolutional Neural Networks,” Sensors, vol. 17, no. 11, p. 2487, Oct. 2017.
Andri Suryadi, Sistem pengenalan Wajah Menggunakan Principal Component Analysis Dengan Algoritma Fuzzy C-Mean (PCM), Jurnal Pendidikan Matematika ISBN 20864280 Volume 4 nomor 2 Mei 2015.
Dian Esti Pratiwi , Agus Harjoko, ” Implementasi Pengenalan Wajah Menggunakan PCA”, IJEIS, Vol.3, No.2, , pp. 175~184 ISSN: 2088-3714, October 2013
Aris Budi S , Suma'inna , Hata Maulana, ” Pengenalan Citra Wajah Sebagai Identifier Menggunakan Metode Principal Component Analysis (PCA)”, Jurnal Teknik Informatika vol 9 no. 2, ISSN 1979-9160, Oktober 2016