Analisis Morfologi Partikel Mikrostruktur Geopolimer Abu Sekam Padi Menggunakan Pembakaran Dengan Alat Furnace Dan Pembakaran Secara Manual

Main Article Content

Cut Yusnar

Abstract

The morphology of Rice Husk Ash (RHA) geopolymer microstructure particles obtained by using a kiln at a temperature of 700oC produces a grain shape that is different from the RHA material burned by hand. The shape of the microstructure particles for geopolymer concrete paste determines the strength of the geopolymer range. The research results show that the shape of the granules obtained by firing in a kiln has a crystalline shape. Meanwhile, the shape of the particles obtained by manual firing is amorphous. The results of compressive strength tests with amorphous particle structures have greater compressive strength than those in crystalline form. This is demonstrated by testing the RHA furnace material and manually using SEM (Scanning Electron Microscopy) and XRD (X-Ray Diffraction) tests, which show that the granules obtained from furnace burning are crystalline and those obtained from manual burning are amorphous. Crystalline particles are more difficult to react with than amorphous particles in geopolymer concrete mixes. The XRD test results show the highest diffraction by the silica element. The chemical content of silica elements in rice husk ash was found to be 94.9%.

Article Details

How to Cite
[1]
Cut Yusnar, “Analisis Morfologi Partikel Mikrostruktur Geopolimer Abu Sekam Padi Menggunakan Pembakaran Dengan Alat Furnace Dan Pembakaran Secara Manual”, JSE, vol. 9, no. 2, pp. 8629–8637, Mar. 2024.
Section
Articles

References

Katsuki, H., et al. ZSM -5- Zeolite porous carbon composite: Conventional and Microwave-Hydrothermal Synthetic from Carbonized Rice Husk, Microporous and Mesoporous Materials. 2005, vol. 86 (1): 145-151.

Davidovits, J. Geopolymer Chemistry and Applications. France, Saint-Quentin: Institute Geopolymer, 2008.

Young, J. F., Bentur, A., Mindess, S., The Science and Technology of Civil Engineering Materials. New Jersey: Sidalc.net November 2016.

Hardjito, D., Rangan, D. V. Development and Properties of Calcium Fly Ash Based Geopolymer Concrete. Research Report Australia: Faculty of Engineering, Curtin University of Technology. 2005.

Davidovits, J. Properties of Geopolymer Cement. Proceeding International Conference on Alkaline Cement and Concrete. Ukraina: Kiev State Technical University. 1994.

S. Niken. Kajian terhadap Beton Geopolimer dengan Bahan Tambah Abu Sekam Padi. Bandung: Jurnal Teknik Sipil Institut Teknologi Bandung. 2010.

Kusumastuti, E. Geopolimer Abu Layang Batu Bara: Studi Rasio Mol SiO2/Al2O3 dan Sifat-sifat Geopolimer yang Dihasilkan. Surabaya: Institut Teknologi Sepuluh November. 2009.

Anwar, S., Kusumastuti, E., Pemanfaatan Serat Batang Pohon Pisang dalam Sintesis Geopolimer. Jakarta: Indonesian Journal of Chemical Science, vol. 5 (1): 12-18. 2016.

Hwang, C. L., Huynh, T. P. Effect of Alkali-Activator on High Rice Husk Ash Content on Strength Development of Fly Ash and Residual Rice Husk Ash Based Geopolymers. Construction and Building Materials, vol. 101: 1-9. 2015.

He, J., et al. Synthesis and Characterization of Red Mud and Rice Husk Ash-Based Geopolymer Composite. USA: Louisiana State University Department of Civil and Environmental Engineering. 2013.

Bakherev, T. Resistance of Geopolymer Materials to Attach. Cement and Concrete Research, vol. 35: 658-670. 2005.

C. Y, Heah., etc. Study on Solid to Liquid Alkaline Activator and Kaolin Based Geopolymer. Construction and Building Journal, vol. 13: 12-922. 2012.

ASTM C39M. Standard Test Method for Compressive Silica Cylindrical Concrete Specimens. United State: West Conshobocken. 2014.

Van Jaarsveld, J. G. S., Van Deventer, J. S. J., Lorenzen, L. Factors Affecting the Immobilization of Metal in Geopolymerized Fly Ash. Metallurgical and Materials Transactions B, 29 (1): 283-291. 1998.

Palomo, M., Grutzeck, M. W., Blanco, M. T. Alkali-Activated Fly Ashes-a cement for the future. Cement Concrete Research, 29: 1323-1329. 1999.

Xu, H., Van Deventer. The Geopolymerisation of Alumino-silicate Minerals. International Journal of Mineral processing, 59: 247-266. 2000.

Yun Yong Kim., etc. Strength and Durability Performance of Alkali Activated Rice Husk Ash Geopolymer Mortar. Hindawi Publishing Corporation Scientific World Journal, pp. 305-315. 2014.

Wang, S., Vipulanandan, C. Solidification/Stabilization of Cr (VI) with Cement: Leachability and XRD Analysis. Cement and Concrete Research, 30 (3): 385-389. 2000.

Singh, N. B., Rai, S., Chaturelli, S. Hydration of Composite Cement Progress in Kristal Growth and Characterization of Material, pp. 171-179. 2002.