Development of Alumina-Chitosan Modified Carbon Monolith from Oil Palm Waste: Carbonization and Initial Characterization

Main Article Content

Saisa
Elvitriana
Zulhaini Sartika
Erdiwansyah

Abstract

Acid Mine Drainage (AMD) presents significant environmental challenges due to its low pH levels and high concentrations of heavy metals, such as iron (Fe), which pose serious risks to both ecosystems and human health. This research investigates the synthesis and preliminary characterization of activated carbon biosorbents derived from oil palm empty fruit bunches (OPEFB), enhanced with alumina (Al₂O₃) and chitosan. The OPEFB biomass was carbonized at 600°C in an anaerobic environment and processed to achieve a uniform particle size of 200 mesh. SEM characterization revealed non-uniform particle distribution and agglomeration, which impacted pore development. FTIR analysis identified functional groups like silanol, hydroxide, and siloxane, demonstrating the material's adsorption potential. BET analysis indicated a specific surface area of 6.177 m²/g and a pore volume of 1.567 cm³/g. Despite the relatively modest surface area, these results provide a basis for further improvements, such as optimizing pore structure and adsorption capabilities. The study underscores the potential of alumina-chitosan modified OPEFB-based activated carbon as an efficient, cost-effective, and sustainable approach for AMD remediation, particularly for Fe removal.

Article Details

Section
Articles

References

Abbas, E., Mobini, M., & Eslami, H. (2019). Removal of heavy metals from acid mine drainage by native natural clay minerals, batch and continuous studies. Applied Water Science. https://doi.org/10.1007/S13201-019-0977-X

Alam, T. R. S. (2022). Uji karakteristik pupuk kompos pelet yang diperkaya dengan pupuk NPK dan arang tandan kosong kelapa sawit (TKKS). Indonesian Journal of Agricultural Research.

Chaudhuri, S. G. (2022). Pyritic sulphur—Its distribution, origin in coal seams and production of acid water in mines. Applied Geology. https://doi.org/10.1016/b978-0-12-823998-8.00006-5

Ewubare, P. O., Aliyu, S. O., Ejakhaegbe, J. O., & Okoro, S. O. (2024). An academic review on heavy metals in the environment: Effects on soil, plants, human health, and possible solutions. African Journal of Environmental Education. https://doi.org/10.54536/ajee.v3i1.3261

Fulke, A. B., Ratanpal, S., & Sonker, S. (2024). Understanding heavy metal toxicity: Implications on human health, marine ecosystems and bioremediation strategies. Marine Pollution Bulletin. https://doi.org/10.1016/j.marpolbul.2024.116707

Georgin, J., Meili, L., & Franco, D. S. P. (2023). A review of the application of low-cost adsorbents as an alternative method for biosorption of contaminants present in water. Latin American Journal of Environmental Engineering. https://doi.org/10.17981/ladee.04.02.2023.1

Hasan, M., Saidi, T., & Afifuddin, M. (2021). Mechanical properties and absorption of lightweight concrete using lightweight aggregate from diatomaceous earth. Construction and Building Materials, 277, 122324. https://doi.org/10.1016/j.conbuildmat.2021.122324

Hernández-Martínez, D., Leyva-Verduzco, A. A., Rodríguez-Félix, F., Acosta-Elías, M., & Wong-Corral, F. J. (2020). Obtaining and characterization of silicon (Si) from wheat husk ash for its possible application in solar cells. Journal of Cleaner Production, 271, 122698. https://doi.org/10.1016/j.jclepro.2020.122698

Kurniawan, A., Nizar, M., Rijal, M., Bagas, R., & Setyarsih, W. (2014). Studi pengaruh variasi suhu kalsinasi terhadap kekerasan bentuk morfologi, dan analisis porositas nanokomposit CaO/SiO2 untuk aplikasi bahan biomaterial. Jurnal Penelitian Fisika dan Aplikasinya (JPFA), 4(2), 22–26.

Rahimzadeh, M. R., Kazemi, S., Moghadamnia, A., Ghaemi Amiri, M., & Moghadamnia, A. A. (2023). Iron; Benefits or threatens (with emphasis on mechanism and treatment of its poisoning). Human & Experimental Toxicology. https://doi.org/10.1177/09603271231192361

Shen, L., Guo, X., Fang, X., Wang, Z., & Chen, L. (2012). Magnesiothermically reduced diatomaceous earth as a porous silicon anode material for lithium ion batteries. Journal of Power Sources, 213, 229–232. https://doi.org/10.1016/j.jpowsour.2012.03.097

Tsai, W.-T., Lai, C.-W., & Hsien, K.-J. (2006). Characterization and adsorption properties of diatomaceous earth modified by hydrofluoric acid etching. Journal of Colloid and Interface Science, 297(2), 749–754. https://doi.org/10.1016/j.jcis.2005.10.058

Titus, D., Samuel, E. J. J., & Roopan, S. M. (2019). Nanoparticle characterization techniques. In A. K. Shukla & S. Iravani (Eds.), Green synthesis, characterization and applications of nanoparticles (pp. 303–319). Elsevier.

Zulichatun, S., et al. (2015). Analisis luas permukaan zeolit alam termodifikasi dengan metode BET menggunakan Surface Area Analyzer (SAA). Universitas Negeri Semarang.