One-Step Sputtering CuInGaSe 2 (CIGSe) Process for Thin Film Solar Cells: Progress and Challenges

Main Article Content

Maliya Syabriyana
Zeni Ulma
Rosalia Dwi Werena

Abstract

The one-step sputtering for fabricating CuInGaSe2 (CIGSe) solar cells has been gaining attention due to its potential for simplifying the manufacturing process, large area uniformity, and environmentally friendly as less reliance on toxic Se precursors such as H 2 Se. Despite these advantages, several drawbacks remain. To date, devices fabricated by quaternary sputtering without additional selenization have been limited in efficiency to about 16%, and realizing bandgap grading in order to match the performance of the best evaporated devices presents a challenge. We discuss the prospects for quaternary sputtering as a fabrication technique for CIGSe and highlight areas of research that may result in improved performance. It also delves into the challenges faced in optimizing the material properties and device performance, and the ongoing research efforts to overcome these hurdles.  The paper concludes with a perspective on the future directions for the field, emphasizing the importance of this research in the context of sustainable energy solutions.

Article Details

Section
Articles

References

CIGSe Solar Cell Market Report; Global Forecast From 2023 To 2031 - Dataintelo. https://dataintelo.com/report/CIGSe-solar-cell-market/

Brozak, M., Cansizoglu, H., & Karabacak, T. (2017). Deposition of quaternary sputtered CIGS nanorods via glancing angle deposition. Physica Status Solidi (RRL) - Rapid Research Letters, 11(1), 1600326. https://doi.org/10.1002/pssr.201600326

Chantana, J., Arai, H., & Minemoto, T. (2016). Trap-assisted recombination for ohmic-like contact at p-type Cu (In,Ga)Se 2 /back n-type TCO interface in superstrate-type solar cell. Journal of Applied Physics, 120(4), 045302. https://doi.org/10.1063/1.4959210

Chen, C.-H., Shih, W.-C., Chien, C.-Y., Hsu, C.-H., Wu, Y.-H., & Lai, C.-H. (2012). A promising sputtering route for one-step fabrication of chalcopyrite phase Cu(In,Ga)Se2 absorbers without extra Se supply. Solar Energy Materials and Solar Cells, 103, 25–29. https://doi.org/10.1016/j.solmat.2012.04.008

Cho, Y., Jeong, I., Gang, M. G., Kim, J. H., Song, S., Eo, Y.-J., Ahn, S. K., Shin, D. H., Cho, J.-S., Yun, J. H., Gwak, J., & Kim, K. (2018). Alkali incorporation into Cu(In,Ga)Se2 determined by crystal orientation of Mo back contact: Implications for highly efficient photovoltaic devices. Solar Energy Materials and Solar Cells, 188, 46–50. https://doi.org/10.1016/j.solmat.2018.08.014

Desarada, S. V., Chavan, K. B., & Chaure, N. B. (2023). Effect of Different Annealing Techniques on CIGS Deposited Using One-Step Single-Target Sputtering. Journal of Electronic Materials, 52(5), 3413–3419.

Frantz, J. A., Myers, J. D., Bekele, R. Y., Nguyen, V. Q., Sadowski, B. M., Maximenko, S. I., Lumb, M. P., Walters, R. J., & Sanghera, J. S. (2016). Quaternary sputtered Cu (In, Ga) Se 2 absorbers for photovoltaics: A review. IEEE Journal of Photovoltaics, 6(4), 1036–1050.

Hsu, C.-H., Ho, W.-H., Wei, S.-Y., & Lai, C.-H. (2017). Over 14% Efficiency of Directly Sputtered Cu(In,Ga)Se 2 Absorbers without Postselenization by Post-Treatment of Alkali Metals. Advanced Energy Materials, 7(13), 1602571. https://doi.org/10.1002/aenm.201602571

Hsu, C.-H., Su, Y.-S., Wei, S.-Y., Chen, C.-H., Ho, W.-H., Chang, C., Wu, Y.-H., Lin, C.-J., & Lai, C.-H. (2015). Na-induced efficiency boost for Se-deficient Cu(In,Ga)Se 2 solar cells: Na-induced efficiency boost for Se-deficient CIGS solar cells. Progress in Photovoltaics: Research and Applications, 23(11), 1621–1629. https://doi.org/10.1002/pip.2600

Huang, C.-H., Chuang, W.-J., Lin, C.-P., Jan, Y.-L., & Shih, Y.-C. (2018). Deposition technologies of high-efficiency CIGS solar cells: Development of two-step and co-evaporation processes. Crystals, 8(7), 296.

Jingxue, F., Zhao, W., Wei, W., Ye, Y., Lin, Z., Xin, W., Ruijiang, H., Hui, S., & Chen, M. Z. Q. (2016). Preparation and optimization of a molybdenum electrode for CIGS solar cells. AIP Advances, 6(11), 115210. https://doi.org/10.1063/1.4967427

Kamikawa-Shimizu, Y., Shimada, S., Watanabe, M., Yamada, A., Sakurai, K., Ishizuka, S., Komaki, H., Matsubara, K., Shibata, H., Tampo, H., Maejima, K., & Niki, S. (2009). Effects of Mo back contact thickness on the properties of CIGS solar cells. Physica Status Solidi (a), 206(5), 1063–1066. https://doi.org/10.1002/pssa.200881200

Kim, D., Shin, S. S., Lee, S. M., Cho, J., Yun, J. H., Lee, H. S., & Park, J. H. (2020). Flexible and Semi‐Transparent Ultra‐Thin CIGSe Solar Cells Prepared on Ultra‐Thin Glass Substrate: A Key to Flexible Bifacial Photovoltaic Applications. Advanced Functional Materials, 30(36), 2001775. https://doi.org/10.1002/adfm.202001775

Li, W., Yan, X., Aberle, A. G., & Venkataraj, S. (2017). Effect of a TiN alkali diffusion barrier layer on the physical properties of Mo back electrodes for CIGS solar cell applications. Current Applied Physics, 17(12), 1747–1753. https://doi.org/10.1016/j.cap.2017.08.021

Lin, T.-Y., Chen, C.-H., Hong, T.-J., & Lai, C.-H. (2013). Cu(In, Ga)Se2 absorbers prepared by one-step sputtering process with Cu-rich quaternary target. 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), 2612–2614. https://doi.org/10.1109/PVSC.2013.6745009

Lin, T.-Y., Chen, C.-H., & Lai, C.-H. (2012). Mo effect on one-step sputtering chalcopyrite CIGS thin films. 2012 38th IEEE Photovoltaic Specialists Conference, 001999–002002. https://doi.org/10.1109/PVSC.2012.6317989

Lyu, X., Zhuang, D., Zhao, M., Zhang, N., Wei, Y., Wu, Y., Ren, G., Wang, C., Hu, L., Wei, J., & Gong, Q. (2019). Influences of Ga concentration on performances of CuInGaSe2 cells fabricated by sputtering-based method with ceramic quaternary target. Ceramics International, 45(13), 16405–16410. https://doi.org/10.1016/j.ceramint.2019.05.169

Nicolaou, C., Zacharia, A., Delimitis, A., Itskos, G., & Giapintzakis, J. (2020). Single-step growth of high quality CIGS/CdS heterojunctions using pulsed laser deposition. Applied Surface Science, 511, 145547.

Ouyang, L., Zhuang, D., Zhao, M., Zhang, N., Li, X., Guo, L., Sun, R., & Cao, M. (2015). Cu (In, Ga) Se2 solar cell with 16.7% active‐area efficiency achieved by sputtering from a quaternary target. Physica Status Solidi (a), 212(8), 1774–1778.

Park, J.-C., Lee, J.-R., Al-Jassim, M., & Kim, T.-W. (2016). Bandgap engineering of Cu (In 1-x Ga x) Se 2 absorber layers fabricated using CuInSe 2 and CuGaSe 2 targets for one-step sputtering process. Optical Materials Express, 6(11), 3541–3549.

Peng, X., Zhao, M., Zhuang, D., Guo, L., Ouyang, L., Sun, R., Zhang, L., Wei, Y., Zhan, S., Lv, X., Wu, Y., & Ren, G. (2017). Multi-layer strategy to enhance the grain size of CIGS thin film fabricating by single quaternary CIGS target. Journal of Alloys and Compounds, 710, 172–176. https://doi.org/10.1016/j.jallcom.2017.02.016

Peng, X., Zhao, M., Zhuang, D., Sun, R., Zhang, L., Wei, Y., Lv, X., Wu, Y., & Ren, G. (2018). Two-stage method to enhance the grain size of Cu(In,Ga)Se2 absorbers based on sputtering quaternary Cu(In,Ga)Se2 target. Materials Letters, 212, 165–167. https://doi.org/10.1016/j.matlet.2017.10.033

Ramanujam, J., Bishop, D. M., Todorov, T. K., Gunawan, O., Rath, J., Nekovei, R., Artegiani, E., & Romeo, A. (2020). Flexible CIGS, CdTe and a-Si:H based thin film solar cells: A review. Progress in Materials Science, 110, 100619. https://doi.org/10.1016/j.pmatsci.2019.100619

Salomé, P. M. P., Rodriguez-Alvarez, H., & Sadewasser, S. (2015). Incorporation of alkali metals in chalcogenide solar cells. Solar Energy Materials and Solar Cells, 143, 9–20. https://doi.org/10.1016/j.solmat.2015.06.011

Shi, J. H., Li, Z. Q., Zhang, D. W., Liu, Q. Q., Sun, Z., & Huang, S. M. (2011). Fabrication of Cu(In, Ga)Se2 thin films by sputtering from a single quaternary chalcogenide target. Progress in Photovoltaics: Research and Applications, 19(2), 160–164. https://doi.org/10.1002/pip.1001

Sun, Y., Lin, S., Li, W., Cheng, S., Zhang, Y., Liu, Y., & Liu, W. (2017). Review on Alkali Element Doping in Cu(In,Ga)Se 2 Thin Films and Solar Cells. Engineering, 3(4), 452–459. https://doi.org/10.1016/J.ENG.2017.04.020

Suryavanshi, P. S., & Panchal, C. J. (2023). Low-cost fabrication of single chalcogenide CuInGaSe2 sputter target and its thin films for solar cell applications. Journal of Optics, 1–19.

Wang, Y.-H., Ho, P.-H., Huang, W.-C., Tu, L.-H., Chang, H.-F., Cai, C.-H., & Lai, C.-H. (2020). Engineering a Ga-Gradient by One-Step Sputtering to Achieve Over 15% Efficiency of Cu (In, Ga) Se2 Flexible Solar Cells without Post-selenization. ACS Applied Materials & Interfaces, 12(25), 28320–28328.

Wang, Y.-H., Tu, L.-H., Chang, Y.-L., Lin, S.-K., Lin, T.-Y., & Lai, C.-H. (2021). Surface sulfurization of Cu (In, Ga) Se2 solar cells by cosputtering In2S3 in the one-step sputtering process. ACS Applied Energy Materials, 4(10), 11555–11563.

Yan, Y., Jiang, F., Liu, L., Yu, Z., Zhang, Y., & Zhao, Y. (2016). Control over the preferred orientation of CIGS films deposited by magnetron sputtering using a wetting layer. Electronic Materials Letters, 12(1), 59–66. https://doi.org/10.1007/s13391-015-5263-y

Zhang, L., Zhuang, D., Zhao, M., Gong, Q., Guo, L., Ouyang, L., Sun, R., Wei, Y., Zhan, S., Lyu, X., & Peng, X. (2017). A study on mechanisms of Sb-doping induced grain growth for Cu(InGa)Se2 absorbers deposited from quaternary targets. Journal of Alloys and Compounds, 727, 572–578. https://doi.org/10.1016/j.jallcom.2017.07.340

Zhou, A. J., Mei, D., Kong, X. G., Xu, X. H., Feng, L. D., Dai, X. Y., Gao, T., & Li, J. Z. (2012). One-step synthesis of Cu (In, Ga) Se2 absorber layers by magnetron sputtering from a single quaternary target. Thin Solid Films, 520(19), 6068–6074.

Zhou, D., Zhu, H., Liang, X., Zhang, C., Li, Z., Xu, Y., Chen, J., Zhang, L., & Mai, Y. (2016). Sputtered molybdenum thin films and the application in CIGS solar cells. Applied Surface Science, 362, 202–209. https://doi.org/10.1016/j.apsusc.2015.11.235