

p-ISSN 1693-4849 e-ISSN 2549-2306

Journal of Scientific Information and Educational Creatifity

Editorial Team

EDITOR IN-CHIEF

 Assoc. Prof. Dr. Drs. Abubakar Ajalil, M.Si, SCOPUS ID. <u>58634461600</u>, Universitas Serambi Mekkah, Indonesia

MANAGING EDITOR

 Dr. Dian Aswita, S.Pd, M. Pd, Universitas Negeri Makasar, ID SCOPUS: <u>57202957850</u>, Indonesia

SECTION EDITORS

- Prof. Dr. Magdalena Mo Ching Mok, M. Ed, Educational University of Hongkong, ID SCOPUS 7006024212, Hong Kong
- Dr. Asriani, S. Pd., M. Pd, Universitas Serambi Mekkah, Indonesia
- Dr. Hj. Rani Siti Fitriani, S.S., M. Hum, Universitas Pasundan, Bandung, Indonesia
- Dr. Wahyu Khafidah, S.Pd.I, MA, Serambi Mekkah University, Indonesia
- Dr. Usman Effendi, S.Sos., MM, Universitas Persada Indonesia YAI Jakarta, Indonesia, Indonesia
- Dr. Arfriani Maifizar S,E, M.Si., Universitas Teuku Umar Aceh Barat, Indonesia, ID SCOPUS 57210744149., Indonesia
- Zhao Jing, M. ED, Gizhou Education University, China, China
- Nurlaili Ramli, S. SiT., MPH, Health Polytechnic of the Ministry of Health in Aceh, Aceh Besar. ID SCOPUS 57195919249, Indonesia
- Zaiyana Zaiyana Putri, Universitas Serambi Mekkah, ID SCOPUS <u>57211267424</u>, Indonesia
- Fitri Wulandari, S.Pd., M. Hum, Universitas Islam Riau, ID SINTA 6704089. Indonesia
- JUNAIDI S. PD., M.PD., Universitas Serambi Mekkah, Indonesia
- Said Ali Akbar, S. Pd., M. Si, Universitas Serambi Mekkah, Banda Aceh ID SCOPUS 57190374979, Indonesia
- Muhammad Fajrin Pane, SH.I., M. Hum, Politeknik Tanjung Balai, Sumatera Utara, Indonesia
- Anita Noviyanti, S. Pd., M. Pd, Universitas Serambi Mekkah, Banda Aceh, Indonesia, ID SCOPUS 57219092073, Indonesia
- Drs. Burhanuddin AG,. M. Pd, Universitas Serambi Mekkah, Aceh Indonesia, ID SCOPUS 57219343469, Indonesia
- Drs. Jailani, M. Pd. Universitas Serambi Mekkah ID SCOPUS 57219098536 Indonesia
- Drs. Ridhwan Ismail, M. Pd, Universitas Serambi Mekkah ID SCOPUS <u>57219091724</u>, Indonesia
- Dr. Hj. Israwati, M. Si, Universitas Syiah Kuala, ID SCOPUS <u>57211263956</u>, Indonesia

- Drs. Yulsafli MA, Universitas Serambi Mekkah, ID SCOPUS, Indonesia
- Drs. Anwar S. Pd., M. Pd, Universitas Serambi Mekkah, Banda Aceh ID SCOPUS 58634699300, Indonesia
- Drs. Muhammad Isa, M. Pd, Universitas Serambi Mekkah, Aceh ID SCOPUS <u>57205735891</u>, Indonesia
- Prof. Mahendran, P.hD, Universitas Pendidikan Sultan Idris, Malaysia
- Dr. J. Karthikeyan, Ph.D, National College, Tiruchirappali, India
- Sophia Manning, Ph.D, Kean University New Jersey, USA
- Dra. Hj. Ismawirna, M. Pd, Universitas Serambi Mekkah, ID SCOPUS, Indonesia
- Dra. Hj. Armi, M. Si, Universitas Serambi Mekkah, ID SCOPUS <u>57219094630</u>, Indonesia
- Muhammad Aulia, S.Pd., MTSOL, MA.(Res)., Ph.D. ID Scopus ID 58785862800 Universitas Sviah Kuala, Indonesia
- Septhia Irnanda, S.Pd., M.Tsol., Ph.D, ID Scopus <u>57209573672</u>, Universitas Serambi Mekkah, Indonesia
- Dr. Soetam Rizky Wicaksono, M.M, ID Scopus <u>57209459047</u>, Machung University, Indonesia
- Dr. Lutfi Yondri, M.Hum. ID Scopus <u>24391756000</u>, Kajian Budaya dan Arkeologi Indonesia
- Kamarullah, S. Pdi., M. Pd, Universitas Muhammadiyah Mahakarya Aceh, ID Scopus <u>58577051200</u>, Indonesia
- Teuku Afriliansyah, Universitas Bumi Persada, ID Scopus 57200726172, Indonesia
- Suci Maulina, MA, Universitas Jabal Ghafur, ID Scopus 57204472764, Indonesia
- Dr. Cut Nya Dhin, S. Pd., M. Pd, Universitas Islam Ar-Raniry, Banda Aceh, Indonesia
 WEB AND OJS MANAGER
- Munawir Munawir, ST,. MT, Universitas Serambi Mekkah, ID SCOPUS 57194214483 Indonesia

ADMINISTRATOR OFFICE TEAM

- Dra. Ismawirna M. Pd, Universitas Serambi Mekkah, Banda Aceh, Indonesia. ID. SCOPUS 57463492600,. ID SINTA 6167918, Indonesia
- Dra. Armi M, Si, Universitas Serambi Mekkah, Aceh. Indonesia ID SCOPUS <u>57219094630</u>, Indonesia
- Said Ali Akbar, S. Pd., M. Si, Universitas Serambi Mekkah, Banda Aceh ID SCOPUS 57190374979, Indonesia

ENGLISH LANGUAGE ADVISORS

- Septhia Irnanda, S.Pd., M.Tsol., Ph.D, Unversitas Serambi Mekkah, Aceh ID SCOPUS 5720957372, Indonesia
- Sabrina, S. Pd., M. Appling., M. Tran, Universitas Serambi Mekkah, Banda Aceh, Indonesia
- Muhammad Aulia, S.Pd., MTSOL, MA.(Res)., Ph.D, Syiah Kuala University, Aceh, ID SCOPUS, <u>58785862800</u>, Indonesia

LAYOUT EDITORS

- Samsuddin Samsuddin, Program Studi Teknik Komputer Universitas Serambi Mekkah
- Dr. Nasir Ibrahim, SE., M. Si, Universitas Serambi Mekkah, Indonesia
- Dr. Hj. Elvitriana, Universitas Serambi Mekkah, Indonesia
- Firdaus, Designer Grafis Zoom Printing, Aceh, Indonesia

PROOFREADERS

- Prof. Dr. Asnawi Abdullah, BSc.PH, MHSM, MSc.HPPF, DLSHTM, Ph.D, Universitas Muhammadiyah, Aceh, ID SCOPUS: 57202957850, Indonesia
- Ery Utomo, P.hD, Universitas Negeri Jakarta
- Muslem Daud, S. Ag., M. Ed., Ph.D, Universitas Serambi Mekkah, Aceh, Indonesia, Indonesia
- Dr. Faradiba Sari Harahap, S. Pd., M. Pd, Politeknik Tanjung Balai, Sumatera Utara, Indonesia
- Dr. Muhammad Subhan, Ph.D., M.Sc., B.Eng., MLogM, Aff.M.ASCE, King Abdul Aziz University, Saudi Arabia
- Muhammad Aulia, S.Pd., MTSOL, MA.(Res)., Ph.D, Syiah Kuala University, Aceh, ID SCOPUS 58785862800, Indonesia
- Exkarach Denang, M. Ed., Ph,D, Udom Tani University, Thailand
- Sabrina, S. Pd., M. Appling., M. Tran, Universitas Serambi Mekkah, Banda Aceh, Indonesia
- Prof. Yunisrina Qismullah Yusuf, S. Pd., M. Ed., Ph.D, Universitas Syiah Kuala, Aceh, ID SCOPUS: <u>55351138500</u>, Indonesia
- Dr. H. Muhammad Alfatih Suryadilaga, S.Ag., M. Ag, Universitas Islam Negeri Sunan Kalijaga, Depok, Indonesia
- Sukri Adani, S. Pd., M. Pd, STKIP Muhammadiyah Abdiya, ID Sinta 5984339, Indonesia

Indexed by:

- 1. SINTA 4, 2. Base, 3. Copernicus, 4. ONESearch, 5. Demession, 6. Moraref
- 7. Garuda, 8. Crossref, 9. Copernicus, 10. WordCat, 11. CiteFactor, 12. ISJD
- 13. Scilit, 14. Europub, 15. Advance Science Index

.Integrating Deep Learning-Based STEM Education to Enhance 21st-Century Skills among Generation Z

Mahyuna¹, Nurul Fajri Saminan², Deviyani Rusdiyanti Putri³, Muliana⁴

¹Mahyuna adalah Dosen Universitas Serambi Mekkah, Banda Aceh, Indonesia Email: mahyuna@serambimekkah.ac.id

²Nurul Fajri Saminan Dosen Universitas Serambi Mekkah, Banda Aceh, Indonesia Email: nurul.fajri@serambimekkah.ac.id

³Deviyani Rusdiyanti Putri Dosen Universitas Serambi Mekkah, Banda Aceh, Indonesia Email: deviyanirusdiyantiputri@serambimekkah.ac.id

⁴Muliana Dosen Universitas Serambi Mekkah, Banda Aceh, Indonesia Email: muliana@serambimekkah.ac.id

Abstract

21st century education requires mastery of critical thinking, creativity, communication, collaboration, and digital literacy skills, especially for Generation Z who are growing up amid technological developments. One relevant learning strategy is the integration of Science, Technology, Engineering, and Mathematics (STEM) with a deep learning approach that focuses on conceptual understanding, reflection, and active student engagement. This article aims to review recent national and international research on the application of deep learning-based STEM integration in improving 21st-century skills in Generation Z. The method used is a systematic literature review (SLR). Relevant articles were analyzed thematically, highlighting the implementation of STEM, the application of deep learning, its impact on 21st-century skills, and its relevance to the characteristics of Generation Z. The results of the study show that the integration of STEM with deep learning contributes to improving scientific process skills, problem solving, collaboration, and digital literacy, and is capable of creating contextual, innovative learning that is in line with future needs. Thus, this approach is an effective strategy in facilitating the mastery of 21st-century skills while preparing Generation Z to face global challenges.

Keywords; STEM education, deep learning, 21st-century skills, generation Z.

INTRODUCTION

The rapid advancement of globalization and the Fourth Industrial Revolution has brought significant transformations across various aspects of life, including education. A well-managed education system plays a crucial role in producing high-quality and competitive human resources (Nya'dhin et al., 2024). In this context, the curriculum serves as a vital foundation for achieving educational goals. Without a well-structured

curriculum, the learning process will struggle to achieve its intended outcomes effectively (Kusumawardani et al., 2024).

Generation Z, who grew up in the digital era, is required to master 21st-century skills such as critical thinking, creativity, communication, collaboration, digital literacy, as well as problem-solving and decision-making abilities (Trilling & Fadel, 2021; Ledoh et al., 2024). These competencies are essential assets for navigating global challenges that are increasingly complex, dynamic, and uncertain.

Therefore, educational innovations are needed that not only emphasize knowledge acquisition but also integrate skills and attitudes within real-world contexts (OECD, 2020). Teaching methods become a key instrument for teachers in achieving learning objectives through well-planned and structured activities (Sabariyah et al., 2024). One relevant approach to address this demand is deep learning. This approach not only focuses on mastering conceptual knowledge but also holistically develops students' cognitive, affective, and psychomotor competencies (Waruwu, 2025).

Deep learning encourages students to understand concepts in depth, connect them with prior experiences, and foster reflective thinking (Fullan & Langworthy, 2019). Its strength lies in its flexibility and adaptability, allowing integration with other learning models such as problem-based learning, project-based learning, inquiry-based learning, and collaborative learning to create more meaningful learning experiences.

Meanwhile, the STEM (Science, Technology, Engineering, and Mathematics) approach has also proven effective in preparing future generations. STEM emphasizes the integration of multiple disciplines to solve problems creatively, practically, and collaboratively (Bybee, 2020). However, its successful implementation depends greatly on effective instructional design. Abas et al. (2024) note that STEM can be implemented through various approaches, including problem-based learning, project-based learning, inquiry-based learning, game-based learning, digital-based learning, collaborative learning, and practice-based learning.

The integration of STEM with deep learning has emerged as a relevant solution to enhance educational quality, particularly for Generation Z, who are accustomed to digital technology and tend to learn visually (Hidayat & Suprapto, 2022). Research findings indicate that combining these two approaches strengthens scientific process skills, digital literacy, problem-solving abilities, and collaborative attitudes among students (Rahmawati et al., 2021; Nugroho & Setiawan, 2023). Therefore, examining the integration of STEM and deep learning is essential in providing a comprehensive understanding of its effectiveness in preparing younger generations to meet the demands of the 21st century.

This article aims to review various studies on the implementation of deep learning-based STEM education in the context of 21st-century learning. Through this review, it is expected to provide both conceptual and practical contributions in formulating innovative, contextual, and future-oriented learning strategies to strengthen 21st-century skills, particularly for Generation Z, enabling them to face increasingly complex global challenges.

Mahyuna, Nurul Fajri Saminan, Deviyani Rusdiyanti Putri, Muliana, Integrating Deep Learning-Based STEM Education to......

Hal. 297-302

METHOD

This study applies a systematic literature review (SLR) approach to examine various studies discussing the integration of deep learning-based Science, Technology, Engineering, and Mathematics (STEM) learning in the development of 21st-century skills in Generation Z. Literature sources were obtained from Google Scholar, ResearchGate, and Portal Garuda (SINTA) using the keywords "STEM Education," "Deep Learning," "21st Century Skills," and "Generation Z" with a publication range of 2019–2025. The articles considered were relevant national and international journal publications, available in full text, and addressing the implementation of STEM, the application of deep learning, and the strengthening of 21st-century skills. Publications in the form of non-peer-reviewed proceedings and articles outside this period were not included.

The selection process was carried out by reviewing the titles, abstracts, and content of the articles to ensure topic relevance. The data obtained was analyzed thematically by grouping the research findings based on four main focuses, namely the application of STEM, the application of deep learning, its influence on 21st-century skills, and its relationship with the characteristics of Generation Z. The results of the study were then summarized in the form of a narrative synthesis that provides a comprehensive understanding of the direction of development, obstacles, and prospects for the implementation of deep learning-based STEM learning in the digital era.

RESULT AND DISCUSSION

The results of a literature review using the systematic literature review method show that the integration of deep learning-based STEM learning contributes significantly to strengthening 21st-century skills in Generation Z. In general, the studies analyzed confirm that this approach is effective in developing critical thinking, problem solving, creativity, communication, collaboration, and digital literacy skills. A number of studies (Novitasari et al., 2025; Rahmawati et al., 2021; Nugroho & Setiawan, 2023) emphasize that the application of deep learning in the STEM framework not only deepens conceptual understanding but also directs students to apply their knowledge in real contexts through experimentation, problem solving, and digital collaboration.

The analysis also shows that the integration of STEM with deep learning plays an important role in strengthening science process skills. This is demonstrated by the research of Rahmawati et al. (2021), which found an increase in the ability to formulate hypotheses, design experiments, and analyze data. Furthermore, Nugroho & Setiawan (2023) reported that this model improves high school students' digital literacy and collaborative skills, which is in line with the characteristics of Generation Z who are accustomed to technology. Similar results were also obtained from the research by Zakhrofa & Setiaji (2023), which stated that STEM learning is more effective than conventional methods in improving learning activities and outcomes.

Other studies (Asrizal et al., 2023; Ichsan et al., 2023; Suwardi, 2021) confirm that the STEM approach supports the strengthening of 21st-century skills across

disciplines, while Hardian et al. (2025) add that deep learning not only develops higher-order thinking skills but also contributes to the formation of positive character traits in students. From an international perspective, Fullan & Langworthy (2019) highlight that deep learning emphasizes deep conceptual understanding and reflective skills, while Hidayat & Suprapto (2022) emphasize the relevance of learning to authentic everyday problems. Ichsan et al. (2023) even report an increase in 21st-century skills with a high N-Gain value (0.86), confirming the effectiveness of deep learning-based STEM integration.

In addition, literature reviews show that the integration of STEM and deep learning encourages cross-disciplinary collaboration and strengthens creativity. Bybee (2020) asserts that STEM naturally directs students toward multidisciplinary problem solving, while deep learning adds a reflective and emotional dimension to learning. Kurniawati & Sari (2022) found that the application of deep learning-based STEM projects at the junior high school level can enhance creativity and the ability to design innovative solutions to environmental problems.

Based on the synthesis of these findings, it can be concluded that the integration of STEM with deep learning is an effective pedagogical strategy in strengthening the 21st-century skills of Generation Z. This model is not only oriented towards academic mastery but also provides contextual, meaningful learning experiences that are relevant to the demands of the future. The practical implication is that teachers need to design project-based interdisciplinary learning and encourage reflective engagement among students, so that 21st-century skills can develop optimally.

CONCLUSION

Based on a literature review, integrating STEM learning with a deep learning approach has been proven to be an effective strategy in developing 21st-century skills in Generation Z. This approach not only emphasizes academic mastery but also strengthens essential skills such as critical thinking, problem solving, creativity, communication, collaboration, digital literacy, and positive character building. Research evidence shows that the combination of STEM and deep learning can deliver more contextual, authentic problem-based learning that is relevant to everyday life, thereby encouraging active and reflective engagement among students. In addition, the integration of these two approaches supports cross-disciplinary collaboration, facilitates the development of innovative solutions, and fosters the reflective skills needed to face the complexities of the 21st century.

Therefore, teachers have an important role in designing project-based, problem-solving-oriented interdisciplinary learning so that deep learning-based STEM integration can become a strategic foundation for preparing Generation Z to face global challenges.

REFERENCES

Hal. 297-302

- Abas, R., Yuliana, S., & Hamzah, A. (2024). Implementation of the STEM approach in learning. *Journal of Educational Innovation*, 10(1), 54–70.
- Asrizal, A., Amran, A., & Festiyed, F. (2023). STEM education in science learning: Efforts to improve 21st-century skills. *Journal of Science Education in Indonesia*, 12(1), 15–26.
- Bybee, R. (2020). STEM education: Preparing for the future. Arlington: NSTA Press.
- Fullan, M., & Langworthy, M. (2019). A rich seam: How new pedagogies find deep learning. London: Pearson.
- Hardian, P., Wibowo, T., & Nanda, S. (2025). Deep learning in holistic education: Strengthening character and higher-order thinking skills. *Journal of Education and Technology*, 15(1), 67–79.
- Hidayat, T., & Suprapto, N. (2022). Characteristics of Generation Z in STEM learning based on deep learning. *Journal of Science Education*, 11(2), 98–107.
- Ichsan, I., Suhardi, A., & Lestari, D. (2023). Effectiveness of STEM-based deep learning on 21st-century skills. *Journal of Science and Education*, 14(3), 210–222.
- Kurniawati, D., & Sari, M. (2022). STEM projects based on deep learning to enhance students' creativity. *Journal of Applied Science Education*, 8(2), 135–147.
- Kusumawardani, A., Putri, N., & Ramadhan, D. (2024). The relevance of the 21st-century curriculum to improving education quality. *Journal of Curriculum and Learning*, 9(1), 33–44.
- Ledoh, R., Susanto, H., & Wahyuni, S. (2024). Generation Z and the challenges of 21st-century skills. *Journal of Educational Psychology*, 15(1), 22–31.
- Novitasari, R., Pratama, D., & Yunita, S. (2025). Implementation of deep learning in 21st-century education. *Journal of Learning Innovation*, 14(1), 22–35.
- Nugroho, A., & Setiawan, B. (2023). Integration of deep learning in STEM education: An empirical review in high school students. *Journal of Science Education Innovation*, 12(4), 201–213.
- Nya'dhin, F., Hidayat, A., & Yusuf, M. (2024). Quality education in the era of the Industrial Revolution 4.0. *Journal of Educational Innovation*, 12(2), 45–56.
- OECD. (2020). Future of education and skills 2030. Paris: OECD Publishing.
- Rahmawati, L., Kurniawan, D., & Sari, M. (2021). The effect of STEM-deep learning on science process skills. *Journal of Science Learning*, 9(3), 145–156.
- Sabariyah, R., Ahmad, T., & Zainuddin, M. (2024). Effective learning methods for the digital generation. *Journal of Indonesian Education*, 13(3), 115–128.
- Suwardi, S. (2021). STEM learning as a strategy for improving 21st-century competencies. *Journal of Science Education*, 10(2), 45–56.
- Trilling, B., & Fadel, C. (2021). 21st century skills: Learning for life in our times. San Francisco: Jossey-Bass.
- Waruwu, J. (2025). Deep learning in the context of holistic education. *Journal of Technology and Learning*, 14(2), 77–89.

Vol. 26, No. September 2025 pISSN 1619–4849 eISSN 2549-2306

Zakhrofa, N., & Setiaji, A. (2023). The effectiveness of the STEM approach on student activity and learning outcomes. *Journal of Science Education in Indonesia*, 11(2), 87–96

Copyright © 2025 Mahyuna, Nurul Fajri Saminan, Deviyani Rusdiyanti Putri, Muliana

The manuscript open access article distributed under the Creative Commons CC BY-SA 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.