STRATEGI PENINGKATAN PRESTASI BELAJAR SISWA MELALUI PENDEKATAN MODEL *PROBLEM BASED LEARNING* BERBANTUAN *MATLAB*

Nurbaiti *

Nurbaiti adalah Guru Matematika pada MTsN 1 Kota Banda Aceh Provinsi Aceh E-Mail: nurbaiti@gmail.com

Abstrak

Penelitian ini bertujuan untuk meningkatkan hasil belajar matematika dan aktifitas peserta didik dalam proses pembelajaran pada kelas VIII-8 MTsN Model Banda Aceh melalui penerapan model pembelajaran Problem Based Learning (PBL) berbantuan software MATrix Laboratory (MATLAB) pada materi Sistem Persamaan Linier Dua Variabel (SPLDV). Jenis penelitian yang digunakan adalah penelitian tindakan kelas (PTK). Teknik pengumpulan data melalui tes hasil belajar dan lembar observasi aktivitas siswa. Tes hasil belajar diberikan untuk mengetahui ketuntasan belajar siswa, sedangkan Lemabar observasi aktivitas siswa untuk melihat keaktivan peserta didik dalam proses pembelajaran. Teknik analisis data menggunakan analisis deskriptif yaitu rumus persentase. Ketuntasan belajar klasikal pada siklus I sebesar 63,89%, hasil yang diperoleh pada siklus II sebesar 72,22%, dan siklus III sebesar 83,33%. Sehingga terjadi peningkatan hasil belajar pada siklus II dan III. Berdasarkan hasil penelitian dan pembahasan dapat disimpulkan bahwa melalui penerapan model pembelajaran Problem Based Learning berbantuan software MATLAB dapat meningkatkan hasil belajar meteri Sistem Persamaan Dua Variabel siswa kelas VIII-8 MTsN 1 Model Banda Aceh.

Keywords: Strategi, Problem Based Learning, Matrix Laboratory

PENDAHULUAN

Materi Sistem Persamaan Linier Dua Variabel (SPLDV) merupakan salah satu pokok bahasan mata pelajaran matematika di kelas VIII SMP/MTS semester ganjil yang membahas tentang hubungan suatu variabel dengan variabel yang lain. Masalah yang diberikan pada soal-soal SPLDV berkaitan dengan kehidupan nyata, sehingga siswa diharapkan mampu memahami konsep SPLDV dan terampil dalam memecahkan masalah. SPLDV juga merupakan materi prasyarat untuk pembelajaran matematika di tingkat lanjutan (SMA/MA) sehingga materi SPLDV perlu dipahami secara benar oleh siswa.

Mengingat pentingnya materi SPLDV, maka konsep SPLDV perlu dipahami secara benar oleh siswa. Namun, kenyataannya berdasarkan observasi lapangan ketika

mengajar mata pelajaran matematika di kelas VIII-8 MTsN 1 Model Banda Aceh, terdapat 75 % siswa mengalami kesulitan dalam memahami materi SPLDV. Kesulitan ini berakibat rendahnya hasil belajar mereka. Hal ini sesuai dengan hasil tes yang dilakukan guru bahwa rata-rata skor siswa untuk materi SPLDV adalah 65,97 atau hanya 25 % siswa yang tuntas belajar. Siswa hanya menerima apa yang disampaikan guru, tanpa berusaha mencari dan mengkonstruk sendiri konsep SPLDV. Dengan kata lain, siswa hanya mendengar, melihat dan mencatat materi yang disampaikan guru, lalu mengerjakan latihan, dilanjutkan pekerjaan rumah dan ujian.

Berdasarkan hasil diskusi tim pengajar metematika MTsN 1 Model Banda Aceh, diperoleh kesimpulan bahwa rendahnya hasil belajar siswa matematika disebabkan proses pembelajaran yang terjadi selama ini masih belum tepat. Hasil belajar merupakan perubahan positif terhadap penguasaan konsep, penalaran dan komunikasi serta pemecahan masalah, Kegiatan pembelajaran masih berpusat pada guru, siswa masih menjadi objek belajar yang hanya mengikuti instruksi guru untuk mendengar, mencatat materi pelajaran dan menghafal sederetan rumus. Penyelebab kesulitan siswa dalam belajar matematika salah satunya adalah model pembelajaran (Rusfendi, 1999) Oleh sebab itu, perlu diupayakan suatu pembelajaran yang dapat melibatkan siswa belajar secara aktif dalam pembelajaran SPLDV. Jika siswa terlibat aktif dalam pembelajaran, maka siswa akan mengerti konsep dengan baik, ingat lebih lama dan akan mampu menggunakan konsep tersebut dalam konteks lain.

Salah satu model pembelajaran yang efektif dan dapat diterapkan agar siswa menjadi aktif dan kreatif dalam proses pembelajaran yaitu model pembelajaran berbasis masalah atau yang lebih dikenal dengan istilah *Problem Based Learning* (PBL). *Problem Based Learning* merupakan suatu pendekatan dimana siswa dihadapkan pada masalah autentik (nyata) sehingga diharapkan mereka dapat menyusun pengetahuan sendiri, menumbuh kembangkan keterampilan tingkat tinggi dan inkuiri, memandirikan siswa, dan meningkatkan kepercayaan dirinya (Arends, 2000). PBL merupakan model pembelajaran yang mengkaitkan permasalahan kehidupan sehari-hari sehingga siswa lebih mudah memahami isi pelajaran dan menuntut siswa untuk aktif berpikir dan terampil memecahkan masalah (Ibrahim dan Nur, 2000).

Pembelajaran berbasis masalah adalah kurikulum dan proses pembelajaran. Dalam kurikulumnya, dirancang masalah-masalah yang mendapatkan pengetahuan yang penting, membuat mereka mahir dalam memecahkan masalah, dan memiliki strategi belajar sendiri serta memiliki kecakapan berpartisipasi dalam tim (Ibrahim Dkk 2018: 122). Model pembelajaran ini dapat mengembangkan kemampuan berpikir siswa melalui pemecahan masalah, karena siswa dilibatkan secara aktif dalam proses maupun perolehan hasil penyelesaian dari suatu masalah. Dalam penerapanan model ini guru berperan sebagai fasilitator pembelajaran, memberikan motivasi dan arahan agar siswa bersedia melakukan sesuatu dan mengungkapkannya secara lisan. Tahap model *problem based learning* yaitu:

Tahap 1: Orientasi siswa terhadap masalah. Pada tahap ini guru mengarahkan kepada siswa bahwa tujuan pembelajaran tidak untuk memperoleh informasi baru dalam jumlah yang besar, tetapi disini siswa dituntut untuk melakukan penyelidikan terhadap suatu masalah agar siswa tahu bagaimana cara menyajikan masalah suatu materi. Guru mengajukan masalah dan meminta siswa untuk mencermati masalah tersebut. Selanjutnya guru meminta siswa untuk mengemukakan teori dan ide yang dapat digunakan dalam memecahkan masalah tersebut.

Tahap 2: Mengorganisasi siswa untuk belajar. Pada tahap ini guru membimbing siswa untuk memecahkan suatu permasalahan dengan cara berkerja sama satu dengan yang lainnya. Guru membagi siswa ke dalam kelompok yang bervariasi, masing-masing kelompok beranggotakan 4-5 orang.

Tahap 3: Membimbing penyelidikan individu dan kelompok.Pada tahap ini guru membimbing siswa apabila pada saat melaksanakan eksperimen terdapat suatu permasalahan, siswa diarahkan untuk melakukan penyelidikan guna mendapatkan informasi mengenai masalah itu seperti apa dan bagaimana pemecahannya. Siswa melakukan penyelidikan/pemecahan masalah secara bebas dalam kelompoknya.

Guru bertugas mendorong siswa mengumpulkan data dan melaksanakan eksperimen aktual hingga mereka benar-benar mengerti dimensi situasi permasalahannya. Tujuannya adalah agar siswa mampu mengumpulkan informasi yang cukup yang diperlukan untuk mengembangkan dan menyusun ide-ide mereka sendiri. Untuk itu guru harus ebih banyak tahu tentang masalah yang diajukan agar mampu

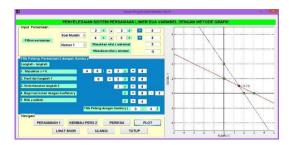
membimbing siswa dan memberikan berbagai informasi yang diperlukan siswa dalam memecahkan masalah tersebut.

Tahap 4: Mengembangkan dan menyajikan hasil karya. Pada tahap ini guru membimbing siswa untuk mengembangkan hasil karyanya dari apa yang dikerjakannya ke dalam bentuk laporan atau video. Guru meminta salah seorang anggota kelompok untuk mempresentasikan hasil kerja kelompok dan membantu jika siswa mengalami kesulitan. Kegiatan ini berguna untuk mengetahui hasil sementara pemahaman dan penguasaan siswa terhadap materi yang disajikan.

Tahap 5: Menganalisis dan mengevaluasi proses pemecahan masalah. Tahap ini guru membantu siswa dalam penyelidikan yang dilakukan siswa dan membantu siswa untuk memecahkan suatu masalah agar siswa tahu bagaimana proses pemecahan suatu permasalahan yang baik itu seperti apa. Guru membantu siswa menganalisis dan mengevaluasi proses berpikir mereka tentang pemecahan masalah yang telah dikerjakan. Sementara itu siswa menyusun kembali hasil pemikiran dan kegiatan yang dilampaui pada setiap tahap penyelesaian masalah.

Berdasarkan pernyataan tersebut, maka dapat disimpulkan bahwa tahapan/sintaks strategi pembelajaran berbasis masalah terdiri dari memberikan orientasi permasalahan kepada siswa, mendiagnosis masalah, guru membimbing proses pengumpulan data individu maupun kelompok, mengembangkan dan menyajikan hasil karya, menganalisis dan mengevaluasi proses dan hasil (Rusmono, 2012).

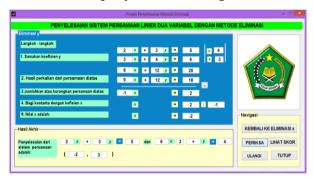
Model pembelajaran PBL memiliki keunggulan antara lain: 1) PBL merupakan teknik yang cukup bagus untuk lebih memahami pelajaran. 2) PBL dapat menantang kemampuan siswa serta memberikan kepuasan untuk menemukan pengetahuan baru bagi siswa. 3) PBL dapat meningkatkan aktivitas pembelajaran. 4) PBL dianggap lebih menyenangkan dan disukai siswa. 5) PBL dapat mengembangkan kemampuan berpikir kritis. 6) PBL dapat memberikan kesempatan kepada siswa untuk mengaplikasikan pengetahuan yang mereka miliki dalam dunia nyata. 7) PBL dapat mengembangkan minat siswa untuk belajar secara terus-menerus sekalipun belajar pada pendidikan formal telah berakhir (Sanjaya, 2009).


Kekurangan Model pembelajaran PBL antara lain: 1) Siswa tidak memiliki minat atau tidak mempunyai kepercayaan bahwa masalah yang dipelajari sulit untuk

dipecahkan, maka mereka akan merasa enggan untuk mencoba. 2) Keberhasilan model pembelajaran melalui PBL membutuhkan cukup waktu untuk persiapan. 3) Tanpa pemahaman mengapa mereka berusaha untuk memecahkan masalah yang sedang dipelajari, maka mereka tidak akan belajar apa yang ingin mereka pelajari(Sanjaya, 2009).

Selain model pembelajan *Problem Based Learning* (PBL) alternatif lain yang dapat membuat pembelajaran matematika lebih menarik dan siswa dapat berperan aktif adalah menggunakan suatu *software* pembelajaran dengan memanfaatkan teknologi informasi dan komunikasi. *Software* yang berbasis teknologi dan informasi ini diharapkan mampu memecahkan kesulitan yang dialami siswa. Dalam kegiatan belajar mengajar ketidak jelasan bahan yang disampaikan dapat dibantu dengan menghadirkan *software* sebagai perantara (Djamarah dan Zain, 1995).

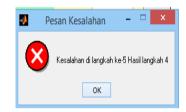
Penggunaan *software* matematika untuk pembelajaran, diharapkan dapat membantu dalam memahami dan menambah minat belajar siswa yang menganggap pelajaran matematika rumit, susah, dan membosankan (Kartika, 2014). *Software* yanga digunakan dalam penelitian ini adalah MATLAB singkatan dari *MATrix Laboratory*. MATLAB merupakan suatu program yang membantu memecahkan berbagai masalah matematis yang kerap ditemukan dalam bidang teknis.


User dapat memanfaatkan kemampuan MATLAB untuk menemukan solusi dari berbagai masalah secara cepat, mulai hal yang paling dasar, misalkan persamaan dengan 2 variabel: x - 2y = 32 dan 12x + 5y = 12 hingga yang kompleks, seperti mencari akarakar, interpolasi dari sejumlah data, perhitungan dengan matriks, (Widiarsono, 2005). Salah satu fasilitas yang dimiliki oleh MATLAB adalah GUIDE atau GUI *builder* yang merupakan sebuah *Graphical User Interface* (GUI). Apikasi yang menggunakan GUI umumnya lebih mudah dipelajari dan digunakan karena orang yang menjalankannya tidak perlu mengetahui perintah yang ada dan bagaimana cara kerjanya, (Wijaya, 2019). GUI MATLAB yang dirancang untuk mencapai materi SPLDV diantaranya metode grafik, substitusi, dan eliminasi. Berikut tampilan e-LKPD pada GUI MATLAB.

Gambar 1. Mencari titik potong sumbu x dan y pada metode grafik

Gambar 2. Mencari solusi penyelesaiabn dengan metode substitusi

Gambar 3. Mencari solusi penyelesaian dengan metode eliminasi


Penggunaan *software* MATLAB dengan rancangan yang diberi nama *electronic* Lembar Kerja Peserta Didik (*e*-LKPD), diharapkan peserta didik dapat menemukan sendiri konsep penyelesaian SPLDV karena peserta didik dapat berulangkali mengerjakan soal-soal baik yang terdapat dalam *e*-LKPD atau soal yang dibuat sendiri oleh peserta didik.

Kemudian memeriksa jawan yang dikerjakan benar atau salah tanpa perlu bertanya berulang-ulang kepada guru apakah yang mereka kerjakan sudah benar sehingga dengan berulang-ulang mengerjakan soal sehingga dapat menemukan dan memahami konsep matematika yang akan dipelajari dan guru dalam pembelajaran hanya bertindak sebagai fasilitator (Nurbaiti, 2016).

Penggunaan GUI MATLAB merupakan hal yang baru bagi siswa serta mampu membangkitkan rasa senang siswa sehingga siswa memahami konsep matematika dengan baik dan terbukti meningkatkan nilai harian maupun nilai semester siswa pada pokok bahasan Relasidan Fungsi, (Herawati, 2014).

Dengan menggunakan GUI MATLAB materi pelajaran dapat dimodifikasi menjadi lebih menarik dan mudah dipahami, materi yang sulit akan menjadi lebih mudah, dan suasana belajar yang menegangkan menjadi menyenangkan, (Mulya Cut,

2017).

Gambar 3 dan 4 Pengecekan Nilai Benar-Salah

Pada saat peserta didik mengerjakan e_LKPD, peserta didik dapat memeriksa jawaban dengan menekan tombol "PERIKSA". Jika angka yang diinput benar maka akan keluar pesan benar seperti Gambar 4 dan sebaliknya. Jika nilai semua nilai pada e-LKPD selesai diinput dan hasil pengecekan sudah benar, maka peserta didik dapat menekan tombol "CEK NILAI" untuk mengetahui nilai yang diperoleh siswa seperti Gambar 5. Apabila jawaban peserta didik belum benar maka peserta didik dapat memperbaiki jawaban, namun terjadi pengurangan nilai sebanyak lima point.

Gambar 5. Nilai yang diperoleh peserta didik

Berdasarkan latar belakang yang telah diuraikan maka rumusan masalah dalam penelitian ini adalah "Apakah dengan penerapan model *Problem Based Learning* berbantuan *software* MATLAB dapat meningkatkan hasil belajar siswa kelas VIII-8

MTsN Model Banda Aceh pada materi SPLDV?". Tujuan penelitian ini berdasarkan rumusan masalah yaitu untuk meningkatkan hasil belajar siswa kelas VIII-8 MTsN Model Banda Aceh melalui model pembelajaran *Problem Based Learning* berbantuan

software MATLAB pada materi Sistem Persamaan Linier Dua Variabel.

METODE PENELITIAN

Seting Penelitian

Penelitian ini dilaksanakan di MTsN 1 Model Banda Aceh, Adapun kelas yang dijadikan sebagai subjek penelitian adalah kelas VIII-8 dengan jumlah siswa 36 orang yang terdiri 15 orang laki-laki dan 21 orang perempuan. Penelitian ini dilaksanakan

pada semester ganjil dengan materi sistem persamaan linier dua variabel.

Variabel yang Diteliti

Variabel dalam penelitian ini adalah: Variabel input berupa sumber belajar yaitu electronic Lembar Kegiatan Siswa (e-LKPD) dan Lembar Kegiatan Siswa (LKPD) yang dirancang dan disusun berdasarkan penerapan model pembelajaran *Problem Based Learning* (PBL) dalam pembelajaran materi sistem persamaan dua variabel dengan menggunkan *software* MATLAB. Variabel proses berupa aktivitas siswa selama pembelajaran, sedangkan Variabel output berupa hasil belajar siswa siswa (ketuntasan belajar) dan regnen siswa terhadan pembelajaran PBL berhantuan software MATLAB.

belajar) dan respon siswa terhadap pembelajaran PBL berbantuan software MATLAB.

Prosedur Penelitian

Adapun prosedur penelitian dalam penelitian ini mengacu pada langkah-langkah Penelitian Tindakan Kelas (PTK). Adapun langkah-langkah PTK sebagai berikut: Merencanakan, merencanakan meliputi beberapa kegiatan antara lain : a) Menyusun

rencana pembelajaran untuk setiap tindakan, b) Menyiapkan software yang dibutuhkan.

c) Menyiapkan *Electronic* Lembar Kerja Peserta Didik (*e*-LKPD), d) Menyiapkan Lembar kerja Peserta Didik (LKPD) dan e) Menyiapkan Lembar Observasi Aktivitas Sierra (LOAS)

Siswa (LOAS).

Melaksanakan kegiatan dalam penelitian pada masing-masing tindakan disesuaikan dengan rencana pembelajaran yang telah disusun, yaitu pembelajaran

Problem Based Learning berbantuan software MATLAB pada materi sistem persamaan

linier dua variabel.

Mengamati, Selama kegiatan pembelajaran berlangsung, peneliti melakukan

pengambilan data berupa hasil pengamatan yang dilakukan oleh observer. Objek yang

diamati adalah kegiatan guru dan siswa selama kegiatan pembelajaran berlangsung.

Selain lembar observasi disediakan catatan lapangan guru untuk melengkapi data hasil

observasi.

Refleksi dilakukan untuk melihat keseluruhan proses pelaksanaan tindakan dan

hasil pemahaman siswa. Merefleksi adalah menganalisis data-data yang diperoleh dari

observasi, wawancara dan catatan lapangan. Tahap refleksi meliputi kegiatan

memahami, menjelaskan dan menyimpulkan data. Peneliti bersama pengamat

merenungkan hasil dari setiap tindakan sebagai bahan pertimbangan apakah siklus

sudah mencapai kriteria keberhasilan yang ditentukan atau belum.

Jadi setiap tindakan yang dilakukan memuat keempat tahapan siklus di atas

(perencanaan, pelaksanaan tindakan, observasi dan refleksi). Indikator yang digunakan

untuk menunjukkan suksesnya masing-masing tindakan atau kegiatan pembelajaran

jika: (1) terpenuhinya ketuntasan belajar siswa secara klasikal yang berarti adanya

peningkatan hasil belajar siswa; dan (2) aktivitas siswa selama pembelajaran efektif.

Teknik Pengumpulan Data

Tes Hasil Belajar

Tes hasil belajar dilakukan pada akhir pembelajaran setiap siklusnya. Pada

siklus I, tes hasil belajar berbentuk essai sebanyak tiga soal. Soal pertama dan kedua

siswa merubah soal cerita ke dalam model matematika dan soal ketiga siswa menguji

kebenaran jawaban pada soal kedua dengan MATLAB. Sedangkan pada siklus II, soal

tes hasil belajar berbentuk essai sebanyak dua soal di mana siswa menjawab dengan

cara mengubah soal cerita ke dalam model matematika, dan kedua soal dicek

kebenarannya dengan MATLAB.

Lembar Observasi Aktivitas Siswa (LOAS)

Lembar observasi ini digunakan untuk memperoleh data tentang aktivitas siswa

selama pembelajaran. Lembar observasi diberikan kepada pengamat ketika guru

338

sedang melaksanakan pembelajaran dengan model pembelajaran *Problem Based Learning* (PBL) untuk diisi setiap lima menit dengan menuliskan kode atau nomor aspek aktivitas siswa yang paling dominan muncul.

Pemanfaatan lembar observasi mengacu kriteria penilaian siswa yang berlaku sebagaimana yang dipergunakan oleh Depdiknas, dapat kita perhatikan dalam tabel berikut:

Tabel 1. Tabel kriteria tingkat kemampuan siswa

Kriteria	Skala Penilaian
Kemampuan matematis tinggi	80 ≤ nilai yang di peroleh ≤ 100
Kemampuan matematis sedang	65 ≤ nilai yang di peroleh < 80
Kemampuan matematis rendah	0 ≤ nilai yang di peroleh < 65

Depdiknas (dalam Widarti, 2013:4

Respon Siswa

Data tentang respon siswa yang diperoleh melalui angket dianalisis dengan menggunakan statistik deskriptif dengan persentase.

Persentase dari setiap respon siswa dihitung dengan rumus: $\frac{\text{Jumlah respon siswa tiap aspek yang muncul}}{\text{Jumlah seluruh siswa}} \times 100\%$

Indikator Kinerja dan Ketuntasan Belajar

Untuk menentukan sukses atau tidaknya siklus tindakan pada penelitian ini, peneliti menetapkan dua indikator kinerja, yaitu indikator kesuksesan dari proses pembelajaran dan hasil belajar siswa melalui tes akhir yang dilakukan pada setiap akhir suatu siklus.

Indikator ketuntasan belajar didasarkan pada Kriteria Ketuntasan Minimal (KKM) mata pelajaran matematika yang berlaku di MTsN 1 Model Banda Aceh yaitu sebesar 80. Siswa dinyatakan tuntas belajar secara individu bila memiliki daya serap paling sedikit sama dengan KKM. Selanjutnya secara klasikal dikatakan tuntas apabila paling kurang 80% mengalami ketuntasan secara klasikial.

Aktivitas Siswa Selama Pembelajaran

Data aktivitas siswa selama pembelajaran berlansung dianalisis dengan menggunakan persentase. Sudjana (2005:50) mengatakan "Persentase pengamatan aktivitas siswa yaitu rata-rata frekuensi setiap aspek pengamatan dibagi dengan jumlah rata-rata frekuensi setiap aspek pengamatan dikali seratus persen".

$$P = \frac{f}{N} \times 100\%$$

Keterangan:

P= angka persentase

f = frekuensi aktivitas siswa

N = jumlah aktivitas keseluruhan siswa

Aktivitas siswa dikatakan aktif apabila waktu yang digunakan untuk setiap aktivitas sesuai dengan alokasi waktu yang termasuk dalam perangkat pembelajaran dengan batasan toleransi 5%. Dan aktivitas siswa dikatakan aktif apabila paling sedikit terdapat 5 aspek yang di dalamnya termasuk aspek menyelesaikan masalah atau menemukan cara penyelesaian masalah memenuhi kriteria batasan keaktifan (Mukhlis, 2005:86).

Respon Siswa

Menurut Khabibah (dalam Setianingsih, 2009:5), menyatakan bahwa kriteria respon siswa selama dalam pembelajaran seperti pada tabel 3.4.

Tabel 2. Kategori Respon Siswa dalam Pembelajaran

No	Persentase Respon	Kategori
1	Rs ≥ 85%	Sangat Positif
2	$70\% \le \text{Rs} < 85\%$	Positif
3	$50\% \le \text{Rs} < 70\%$	Kurang Positif
4	Rs < 50%	Tidak Positif

Keterangan: Rs = Persentase Respon Siswa

Berdasarkan Tabel 3.4 di atas dapat disimpulkan bahwa persentase respon siswa dikategorikan positif apabila persentase rata-rata respon siswa yang positif diperoleh ≥70%.

HASIL PENELITIAN

Deskripsi Hasil

Perencanaan dan Pelaksanaan Penelitian

Berdasarkan hasil penelitian pada siklus satu dan dua, maka dilaksanakan pada siklus III, Kegiatan diawali dengan mempersiapkan beberapa hal yang diperlukan dalam pelaksanaan penelitian yaitu: membuat RPP, menyiapkan bahan ajar mengenai penyelesaian masalah SPLDV dengan metode grafik, membuat LKPD, membuat soal tes siklus III.

Kegiatan awal, Pelaksanaan pembelajaran pada siklus III dilaksanakan sesuai perencanaan dengan alokasi waktu 5 jam pelajaran selama dua kali pertemuan. Pelaksanaan tindakan pada siklus II dilaksanakan ini diawali dengan memberikan motivasi dengan menggali pengetahuan awal peserta didik serta memberikan informasi kompetensi yang akan dipelajari. Pada kegiatan awal pembelajaran, guru menyampaikan kepada seluruh peserta didik tentang hasil belajar yang telah diperoleh siswa pada pertemuan sebelumnya bahwa umumnya hasil belajar yang diperoleh peserta didik masih kurang memuaskan, dengan nilai rata-rata siswa masih berada di bawah nilai minimal KKM yang ditetapkan. Sehingga guru merasa perlu meningkatkan hasil belajar siswa untuk siklus III.

Kegiatan inti, Memasuki kegiatan inti, guru memperagakan cara menggunakan e-LKPD metode eliminasi, Guru memberi permasalahan di papan tulis, lalu diselesaiakan oleh peserta didik. Peserta didik secara berkelompok berdiskusi menyelesaikan soal dengan menerjemahkan soa kedalam model matematika berbentuk sistem persamaan linier dua variabel dan menyelesaikan soal berdasarkan prinsip penyelesaan sistem persamaan linier dua variabel dengan metode eliminasi. Kemudian peserta didik mengecek lagi kedua soal tersebut menggunakan *software* MATLAB, hal ini dilakukan agar peserta didik mengetahui jawaban yang benar, yang dikerjakan secara manual.

Dalam tahap selanjutnya guru membimbing diskusi serta memberikan kesempatan kepada setiap kelompok untuk dapat memaparkan hasil diskusi kelompoknya dan memberi penghargaan kepada kelompok peserta didik yang maju dan menanggapi hasil diskusi. Tahap selanjutnya guru memberikan klarifikasi dan penguatan terhadap materi yang telah didiskusikan serta memberikan bimbingan kepada peserta didik yang belum

memahami materi yang telah dipelajari. Tahap selanjutnya guru memberikan klarifikasi dan penguatan terhadap materi yang telah didiskusikan serta memberikan bimbingan kepada peserta didik yang belum memahami materi yang telah dipelajari

Kegiatan akhir, pada kegiatan akhir, guru membimbing peserta didik untuk melakukan refleksi dan menyimpulkan materi. Sistem persamaan linier dua variabel metode substitusi. Selanjutnya di akhir pertemuan kedua pada siklus III diberikan tes dalam bentuk soal uraian yang terdapat lembaran soal.

Evaluasi

Hasil belajar materi sistem persamaan linier dua variabel metode eliminasi yaitu rata-rata hasil belajar yang diperoleh adalah 85,61. Terdapat 30 peserta didik 83,33%) mencapai nilai tuntas dan 6 peserta didik (16,67%) belum mencapai ketuntasan belajar.

Refleksi

Refleksi hasil analisis hasil belajar siklus III sebagai berikut: Pertama Suasana pembelajaran yang diterapkan oleh guru sangat kondusif dibandingkan siklus I dan II, dan peserta didik juga lebih aktif. Setelah menerima LKPD, seluruh kelompok diberi untuk mempelajari LKPD, berdiskusi dan menyelesaikan LKPD tersebut kemudian mengecek jawaban dengan MATLAB. Peserta didik sudah sangat percaya diri dalam mengimput hasil diskusinya dalam e-LKPD. Guru membimbing dalam menginput e-LKPD baik pada pertemuan pertama maupun pada pertemuan kedua.

Keduan presentasi kelompok berjalan sangat kondusif, peserta didik aktif dalam berdiskusi, memberikan pertanyaan maupun menjawab dan menanggapi pertanyaan yang diajukan dari siswa atau kelompok lain. Dari ketiga siklus tersebut terdapat data aktivitas belajar siswa sebagai berikut :

Tabel 3. Aktivitas Peserta Didik selama Proses Pembelajaran

	Persentase Aktivitas Murid dalam			Persentase	
Aspek	Pembelajaran (%)			Kesesuaian(P)	
rispen	SIKLUS I	SIKLUS II	SIKLUS III	Waktu	Toleransi
				Ideal	5%
1	13,89%	13,89%	14.24%	13%	8%≤p≤18%
2	13,37%	12,85%	13,19%	10%	5%≤p≤15%

	Persentase Aktivitas Murid dalam			Persentase	
Aspek	Pembelajaran (%)			Kesesuaian(P)	
	SIKLUS I	SIKLUS II	SIKLUS III	Waktu	Toleransi
				Ideal	5%
3	22,40%	22,92%	22,92%	27%	22%≤p≤32
4	25,00%	25,00%	25,17%	30%	25%≤p≤35
5	11,63%	11,63%	11,63%	10%	5%≤p≤15%
6	8,16%	8,51%	7,81%	10%	5%≤p≤15%
7	5,56%	5,21%	5,03%	0%	0%≤p≤5%

Keterangan Indikator:

- 1. Mendengarkan/memperhatikan penjelasan guru/teman.
- 2. Membaca/memahami masalah di LKPD.
- 3. Menyelesaikan masalah atau menemukan solusi pemecahan masalah.
- 4. Membandingkan hasil temuan diskusi kelompok dengan hasil diskusi kelompok lainnya.
- 5. Bertanya/menyampa ikan pendapat/ide kepada guru atau teman sekelompok.
- 6. Menarik kesimpulan suatu konsep yang ditemukan atau suatu prosedur yang dikerjakan.
- 7. Perilaku yang tidak relevan dengan KBM.

Berdasarkan tabel 4.5 terlihat aktivitas peserta didik pada siklus I, siklus II, maupun siklus III termasuk dalam kategori aktif. Peserta didik merasa senang dan aktif karena peserta didik diberi kesempatan untuk menggunakan *software* MATLAB yang diberikan, di mana sebelumnya peserta didik jarang menggunakan komputer dalam proses pembelajaran. Serta peserta didik juga dapat memberikan pendapat kepada peserta didik yang lain dalam menilai hasil kerja masing-masing kelompok.

Pembahasan

Setelah diterapkannya pembelajaran *Problem Based Learning* berbantuan *software* MATLAB pada materi sistem persamaan linier dua variabel di kelas VIII-8 MTsN 1 Model Banda Aceh, menunjukkan adanya peningkatan hasil belajar peserta didik untuk setiap siklusnya. Indikator keberhasilan tindakan yang ditetapkan adalah ketuntasan secara individual didasarkan pada Kriteria Ketuntasan Minimal (KKM) mata pelajaran matematika yang berlaku di MTsN 1 Model Banda Aceh yaitu sebesar 80.

Selanjutnya secara klasikal dikatakan tuntas apabila paling kurang 80% mengalami ketuntasan secara klasikial.

Hasil tes belajar siswa pada akhir siklus I diperoleh rata-rata individual siswa 78,57, sedangkan persentase ketuntasan klasikal diperoleh 63,89%. Pada siklus II diperoleh rata-rata nilai individual siswa 78,89 dengan persentase ketuntasan klasikal sebesar 72,22%. Sedangkan hasil tes belajar siswa pada akhir siklus III diperoleh rata-rata 85,19 dengan persentase ketuntasan klasikal sebesar 83,33%. Diagram hasil tes belajar antar siklus I, siklus II, dan siklus III dapat dilihat pada grafik berikut ini.

Grafik 1. Perbedaan Rata-rata dan Persentase Ketuntasan Siklus I, siklus II, dan Siklus III

Berdasarkan gambar dari grafik diatas terlihat peningkatan antar siklus I dan siklus II, di mana peningkatan persentase ketuntasan klasikal yang terjadi sebesar 8,33%. Lalu peningkatan antar siklus II dan siklus III sebesar 11,11%. Hal ini berarti bahwa melalui penerapan *Problem Based Learning* berbantuan *software* MATLAB dapat meningkatkan hasil belajar siswa kelas VIII MTsN Model Banda Aceh pada materi sistem persamaan linier dua variabel.

Hal tersebut disebabkan guru berusaha untuk memaksimalkan aktivitas peserta didik selama pembelajaran, sehingga terciptanya suasana pembelajaran yang kondusif. Pembelajaran *Problem Based Learning* berbantuan *software* MATLAB, mendorong

peserta didik untuk dapat menemukan sendiri konsep penyelesaian persoalan matematika pada materi sistem persamaan linier dua variabel yang terdapat dalam kehidupan sehari-hari baik dengan metode grafik, substitusi maupun eliminasi, sehingga konsep yang ditemukan sendiri akan lebih lama diingat oleh peserta didik. Tugas guru dalam pembelajaran *Problem Based Learning* berbantuan *software* MATLAB hanya sebagai fasilitator guru mengarahkan dan menuntun peserta didik untuk menemukan konsep materi baik secara individu maupun kelompok. Oleh karena itu, penerapan Pembelajaran *Problem Based Learning* berbantuan *software* MATLAB pada materi sistem persamaan linier dua variabel merupakan salah satu alternatif yang baik untuk memberikan kesempatan pada peserta didik dapat menemukan sendiri konsep berhitung dari sistem persamaan linier dua variabel baik dengan metode grafik, substitusi maupun metode eliminasi, sehingga proses belajar diharapkan akan lebih bermakna bagi peserta didik.

Pada siklus I ini, perwakilan kelompok yang ditunjuk untuk mempresentasikan hasil diskusinya masih terlihat canggung dan kurang percaya diri, hal ini dikarenakan mereka belum terbiasa untuk menyajikan hasil diskusinya di depan kelas serta siswa belum terbiasa menggunakan komputer dalam pembelajaran. Di samping itu, pada saat kelompok yang ditunjuk melakukan presentasi tidak banyak kelompok yang mau menanggapi hasil diskusinya, hal ini kemungkinan peserta didik merasa kurang percaya diri untuk mengemukakan pendapatnya walaupun telah diberi kesempatan. Tapi begitu guru mengkaji ulang jawabannya para peserta didik mau berkomentar walaupun dengan koor (secara bersamaan).

Proses diskusi pada siklus I ini dapat dikatakan belum sepenuhnya berhasil, hal ini terlihat dari kurang aktifnya semua anggota kelompok dalam menyelesaikan soal *e*-LKPD dan masih adanya dominasi peserta didik yang lebih pandai akibatnya tidak semua siswa aktif memberikan pendapat. Ini dapat dilihat sebagian besar kelompok mengandalkan peserta didik yang lebih pandai untuk menyelesaikan soal. Dalam hal ini guru harus lebih aktif membimbing dan mengarahkan peserta didik sehingga peserta didik merasa tertarik untuk aktif dalam pembelajaran.

Sedangkan pada siklus II, peserta didik sudah mulai terbiasa dengan pembelajaran *Problem Based Learning* sehingga pada siklus II siswa mulai

memunculkan ide/pendapat saat kelompok lain tampil mempresentasikan hasil kerja kelompok mereka.

Sehingga pada siklus III, peserta didik sudah terbiasa dengan pembelajaran *Problem Based Learning*, pada siklus III siswa berani memunculkan ide/pendapat saat kelompok lain tampil mempresentasikan hasil kerja kelompok mereka sehingga pembelajaran semakin menarik dan aktif.

PENUTUP

Dalam penelitian tindakan kelas ini, indikator keberhasilan tindakan yang ditetapkan adalah 80 secara individual dan 80% secara klasikal. Berdasarkan data yang diperoleh pada akhir siklus I, nilai rata-rata hasil belajar siswa yaitu 78,57 sehingga ketuntasan individualnya adalah 78,57 dengan ketuntasan belajar siswa secara klasikal sebesar 63,89%. Adapun rata-rata hasil belajar siswa pada siklus II yaitu 78,89 sehingga ketuntasan individualnya adalah 78,89 dengan ketuntasan klasikal siswa sebesar 72,22%. Sedangkan hasil belajar siswa pada siklus III adalah 85,19 dimana ketuntasan individual adalah 85,19 dengan persentase ketuntasan secara klasikal 83,33%. Dapat disimpulkan bahwa penerapan Pembelajaran *Problem Based Learning* berbantuan *software* MATLAB pada materi sistem persamaan linier dua variabel di kelas VIII-8 MTsN 1 Model dapat meningkatkan hasil belajar.

DAFTAR PUSTAKA

- Arends, Richard. 2008. *Learning to Teach: Belajar untuk Mengajar*(7thed). Translated by Soetjipto, H. P & S. M. Soetjipto. 2008. Yogyakarta: Pustaka Pelajar.
- Djamarah, S.B., dan Zain, A. 1995. *Stategi Belajar Mengajar*. Renika Cipta. Jakarta.
- Herawati, A.S. 2014. Konstruksi Konsep Relasi dan Fungsi dalam Sistem GUI MATLAB. Universitas Jember. Jawa Timur.
- Ibrahim, M., dan Nur, M. 2000. *Pembelajaran berdasarkan Masalah*. UNESA. Surabaya.
- Jailani, J., Abubakar, A. and Anwar, A., 2018. Implementasi Pendekatan Science Technology Society (Sts) Pada Materi Pokok Lingkungan Hidup

- Sebagai Upaya Peningkatanlife Skill Siswa. *JURNAL SERAMBI ILMU*, 19(2), pp.132-142.
- Kartika, H. 2014. Pembelajaran Matematika Berbantuan Software MATLAB . *Jurnal Pendidikan UNSIKA*, 24-35.
- Mulya Cut at all, 2017. Teaaching Media Devolopmant Of Mathematic In The Materials Trigonometri Sum and Two Angles Difference By Using Gui MATLAB Vol 17 no 2 Program Studi Magister Matematika Unsyiah.
- Nurbaiti. 2016. Membangun Media Pembelajaran Matematika SMP/MTs untuk Materi Sistem Persamaan Linier Dua Variabel. UNSYIAH. Banda Aceh.
- Rusfendi, E. 1999. *Pengantar untuk membantu guru dalam pembelajaran matematika*. Tarsito. Bandung.
- Basyirudin, B., 2017. Meningkatkan Hasil Belajar Matematika Dengan Penerapan Model Problem Based Learning Pada Materi Program Linier Siswa. *JURNAL SERAMBI ILMU*, 18(2).
- Rusmono. 2012. Strategi Pembelajaran dengan Problem Based Learning Itu Perlu. Ghalia Indonesia. Jakarta: Ghalia Indonesia
- Sanjaya.2009. *Strategi Pembelajaran Berorientasi Standar Proses Pendidikan*. Bandung: Kencana Prenada *Software*.
- Widiarsono, Teguh. 2005. Tutorial Praktis Belajar MATLAB. Departemen Teknik Elektro. ITB. Bandung.
- Wijaya, R. C. 2019. *Modul GUI MATLAB*. Fakultas Tekhnik UNJA. Jambi.
- Ibrahim, I., Akmal, N., Marwan, M. and Hasan, S., 2018. PENERAPAN MODEL PEMBELAJARAN BERBASIS MASALAH UNTUK MENINGKATKAN HASIL BELAJAR DAN BERPIKIR KRITISMAHASISWA. *JURNAL SERAMBI ILMU*, *19*(2), pp.120-131.