Prediksi Produksi Tanaman Padi di Sumatera Dengan Menggunakan Algoritma Neural Network
Main Article Content
Abstract
Rice production is a crucial factor for food security in Indonesia. This study aims to predict rice production in Sumatra using the Neural Network algorithm implemented through RapidMiner. The data used includes variables such as year, production, harvested area, rainfall, humidity, and average temperature, collected from eight provinces in Sumatra for the period 1993-2020. The research process involved dividing the dataset into training data (90%) and testing data (10%), normalizing data using the proportion transformation method, and training the model with parameters such as 650 training cycles, 0.9 learning rate, and 0.3 momentum. Model evaluation utilized root_mean_squared_error (RMSE), yielding an RMSE value of 0.006, indicating high prediction accuracy. The results demonstrate that the model is effective in predicting rice production, particularly for data with normal distribution. Recommendations for further development include creating a web-based visual interface to support end-users and applying hyperparameter optimization to enhance model performance. This model is expected to serve as a decision-support tool for strategic planning in the agricultural sector.
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Apriyadi, A., Lubis, M. R., & Damanik, B. E. (2022). Penerapan algoritma C5.0 dalam menentukan tingkat pemahaman mahasiswa terhadap pembelajaran daring. KOMPUTA: Jurnal Ilmiah Komputer dan Informatika, 11(1), 11–20. https://ojs.unikom.ac.id/index.php/komputa/article/view/7386/3116
Awalina, R., Yanti, D., & Irsyad, F. (2021). Analisis faktor yang mempengaruhi produksi padi salibu daerah Sumatera Barat. Jurnal Teknologi Pertanian Andalas, 25(1), 90–95. https://tpa.fateta.unand.ac.id/index.php/JTPA/article/view/398/190
Herwanto, H. W., Widiyaningtyas, T., & Indriana, P. (2019). Penerapan algoritme linear regression untuk prediksi hasil panen tanaman padi. Jurnal Nasional Teknik Elektro dan Teknologi Informasi (JNTETI), 8(4), 364. https://doi.org/10.22146/jnteti.v8i4.537
Kusnaidi, M. R., Gulo, T., & Aripin, S. (2022). Penerapan normalisasi data dalam mengelompokkan data mahasiswa dengan menggunakan metode K-Means untuk menentukan prioritas bantuan uang kuliah tunggal. Journal of Computer System and Informatics (JoSYC), 3(4), 330–338. https://doi.org/10.47065/josyc.v3i4.2112
Kusrini, & Luthfi, E. T. (2019). Algoritma Data Mining. Andi Yogyakarta.
Mahargono Kobarsih & Nugroho Siswanto. (2015). Penanganan Susut Panen dan Pasca Panen Padi Kaitannya dengan Anomali Iklim di Wilayah Daerah Istimewa Yogyakarta. Planta Tropika: Journal of Agro Science, 3(2), 100–106. https://doi.org/10.18196/pt.2015.046.100-106
Nababan, Y., & Nugraha, I. (2024). Penerapan data mining produksi padi di Pulau Sumatera menggunakan analisis regresi linear. JUTIN: Jurnal Teknik Industri Terintegrasi, 7(1), 262–272. https://doi.org/10.31004/jutin.v7i1.23545
Nugroho, P., Pudjiastuti, A. Q., & Sumarno. (2021). Peningkatan Produksi Padi di Kabupaten Malang Melalui Program Upsus Pajale Selama Pandemi Covid-19. Jurnal Agrikultura, 32(3), 199–206. https://doi.org/10.32938/ag.v32i3.135578
Olsa, T. M. (2019). Analisis fungsi produksi beras di Sumatera Barat (Doctoral dissertation, Universitas Andalas). Universitas Andalas.
Prathama, A. Y., Aminullah, A., & Saputra, A. (2017). Pendekatan ANN (Artificial Neural Network) untuk penentuan prosentase bobot pekerjaan dan estimasi nilai pekerjaan struktur pada Rumah Sakit Pratama. Teknosains, 7(1), 14–25. https://doi.org/10.22146/teknosains.30139
RapidMiner. (2024). Normalize operator. RapidMiner Documentation. Diakses pada Desember 15, 2024, dari https://docs.rapidminer.com/2024.1/studio/operators/cleansing/normalization/normalize.html
Ridho, I. I., Mahalisa, G., Sari, D. R., & Fikri, I. (2022). Metode Neural Network untuk penentuan akurasi prediksi harga rumah. Technologia, 13(1), 56–58. https://ojs.uniska-bjm.ac.id/index.php/JIT/article/view/6252/3613
Sanjaya, F. I., & Heksaputra, D. (2020). Prediksi rerata harga beras tingkat grosir Indonesia dengan Long Short Term Memory. Jurnal Teknik Informatika dan Sistem Informasi, 7(2), 163–174. https://jurnal.mdp.ac.id/index.php/jatisi/article/view/388/140
V. R. Prasetyo, H. Lazuardi, A. A. Mulyono, & C. Lauw. (2021). Penerapan Aplikasi RapidMiner Untuk Prediksi Nilai Tukar Rupiah Terhadap US Dollar Dengan Metode Linear Regression. Jurnal Nasional Teknologi dan Sistem Informasi, 7(1), 8–17. https://doi.org/10.25077/teknosi.v7i1.2021.8-17
Yahya, & Mahpuz. (2019). Penggunaan algoritma K-Means untuk menganalisis pelanggan potensial pada dealer SPS Motor Honda Lombok Timur Nusa Tenggara Barat. Infotek: Jurnal Informatika dan Teknologi, 2(2), 109–118. https://e-journal.hamzanwadi.ac.id/index.php/infotek/article/view/1447/pdf_14