Perbandingan Algoritma Klasifikasi untuk Deteksi Intrusi pada Jaringan Komputer (Literature Review)

Main Article Content

Yuce Yuliani

Abstract

Dalam era digital yang semakin maju, keamanan jaringan komputer menjadi semakin krusial. Sistem Deteksi Intrusi (IDS) berperan penting dalam mengidentifikasi dan mencegah serangan siber. Studi ini melakukan tinjauan literatur untuk membandingkan berbagai algoritma klasifikasi yang digunakan dalam deteksi intrusi pada jaringan komputer, termasuk Decision Tree, Random Forest, Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Naive Bayes, dan Neural Networks. Hasil menunjukkan bahwa Neural Networks dan Random Forest memiliki akurasi tinggi tetapi memerlukan sumber daya komputasi yang besar. Sebaliknya, Naive Bayes dan Decision Tree menawarkan kecepatan dan efisiensi komputasi yang lebih baik. Kesimpulan ini memberikan panduan bagi peneliti dan praktisi dalam memilih algoritma yang sesuai berdasarkan kebutuhan spesifik aplikasi dan karakteristik data yang digunakan.

Article Details

How to Cite
Yuliani, Y. (2024). Perbandingan Algoritma Klasifikasi untuk Deteksi Intrusi pada Jaringan Komputer (Literature Review). Journal of Multidisciplinary Inquiry in Science, Technology and Educational Research, 1(3c), 1687–1695. https://doi.org/10.32672/mister.v1i3c.2074
Section
Articles
Author Biography

Yuce Yuliani, Universitas Gunadarma

Sistem Informasi, Fakultas Ilmu Komputer, Universitas Gunadarma, Depok, Jawa barat, Indonesia

References

Adhi Tama, B., Nkenyereye, L., & Lim, S. (2021). A Stacking-based Deep Neural Network Approach for Effective Network Anomaly Detection. Computers, Materials & Continua, 66(2), 2217–2227. https://doi.org/10.32604/cmc.2020.012432

Anwar, S., Septian, F., & Septiana, R. D. (2019). Klasifikasi Anomali Intrusion Detection System (IDS) Menggunakan Algoritma Naïve Bayes Classifier dan Correlation-Based Feature Selection. Jurnal Teknologi Sistem Informasi Dan Aplikasi, 2(4), 135. https://doi.org/10.32493/jtsi.v2i4.3453

Azis, A. I. S., Budy Santoso, & Serwin. (2020). LL-KNN ACW-NB: Local Learning K-Nearest Neighbor in Absolute Correlation Weighted Naïve Bayes for Numerical Data Classification. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 4(1), 28–36. https://doi.org/10.29207/resti.v4i1.1348

Bansal, A., & Garg, H. (2021). An Efficient Techniques for Fraudulent detection in Credit Card Dataset: A Comprehensive study. IOP Conference Series: Materials Science and Engineering, 1116(1), 012181. https://doi.org/10.1088/1757-899X/1116/1/012181

Bhatia, V., Choudhary, S., & Ramkumar, K. . (2020). A Comparative Study on Various Intrusion Detection Techniques Using Machine Learning and Neural Network. 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), 232–236. https://doi.org/10.1109/ICRITO48877.2020.9198008

Bhuyan, S., Barman, D. K., & Bhowmick, A. (2018). Wireless Network Security Using Intrusion Detection System. 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI), 934–938. https://doi.org/10.1109/ICOEI.2018.8553724

Chaudhari, K., Connor, P. M., Comden, J., & King, J. (2022). Learning Assisted Demand Charge Mitigation for Workplace Electric Vehicle Charging. IEEE Access, 10, 48283–48291. https://doi.org/10.1109/ACCESS.2022.3172334

Constantinides, C., Shiaeles, S., Ghita, B., & Kolokotronis, N. (2019). A Novel Online Incremental Learning Intrusion Prevention System. 2019 10th IFIP International Conference on New Technologies, Mobility and Security (NTMS), 1–6. https://doi.org/10.1109/NTMS.2019.8763842

Eka Putra, W. S. (2016). Klasifikasi Citra Menggunakan Convolutional Neural Network (CNN) pada Caltech 101. Jurnal Teknik ITS, 5(1). https://doi.org/10.12962/j23373539.v5i1.15696

Fahmi, F. (2021). Model Support Vector Regression (SVR) Berdimensi Tinggi dengan Pendekatan Fungsi Kernel Berbeda untuk Peramalan Harga Saham TLKM: Sebuah Pemodelan Deret Waktu Selama Masa Pandemi Covid-19. Jurnal Infomedia, 5(2), 44. https://doi.org/10.30811/jim.v5i2.2033

Fauzan, A. C., & Hikmah, K. (2022). IMPLEMENTASI ALGORITMA NAIVE BAYES DALAM ANALISIS POLARISASI OPINI MASYARAKAT TERKAIT VAKSIN COVID-19. Rabit : Jurnal Teknologi Dan Sistem Informasi Univrab, 7(2), 122–128. https://doi.org/10.36341/rabit.v7i2.2403

Gupta, M. D., Kunal, S., Girish, M. P., Gupta, A., & Yadav, R. (2022). Artificial intelligence in cardiology: The past, present and future. Indian Heart Journal, 74(4), 265–269. https://doi.org/10.1016/j.ihj.2022.07.004

Ismanto, E., & Cynthia, E. P. (2019). Identification of the Success of Learning Al Islam and Kemuhammadiyahan Using Machine Learning. Proceedings of the International Conference of CELSciTech 2019 - Science and Technology Track (ICCELST-ST 2019). https://doi.org/10.2991/iccelst-st-19.2019.1

Kibriya, H., Amin, R., Kim, J., Nawaz, M., & Gantassi, R. (2023). A Novel Approach for Brain Tumor Classification Using an Ensemble of Deep and Hand-Crafted Features. Sensors, 23(10), 4693. https://doi.org/10.3390/s23104693

Lasniari, S., Jasril, J., Sanjaya, S., Yanto, F., & Affandes, M. (2022). Klasifikasi Citra Daging Babi dan Daging Sapi Menggunakan Deep Learning Arsitektur ResNet-50 dengan Augmentasi Citra. Jurnal Sistem Komputer Dan Informatika (JSON), 3(4), 450. https://doi.org/10.30865/json.v3i4.4167

Mulyani, A., Kurniadi, D., Nashrulloh, M. R., Julianto, I. T., & Regita, M. (2022). THE PREDICTION OF PPA AND KIP-KULIAH SCHOLARSHIP RECIPIENTS USING NAIVE BAYES ALGORITHM. Jurnal Teknik Informatika (Jutif), 3(4), 821–827. https://doi.org/10.20884/1.jutif.2022.3.4.297

Noble, W. S. (2006). What is a support vector machine? Nature Biotechnology, 24(12), 1565–1567. https://doi.org/10.1038/nbt1206-1565

Pandiangan, N., Buono, M. L. C., & Loppies, S. H. D. (2020). Implementation of Decision Tree and Naïve Bayes Classification Method for Predicting Study Period. Journal of Physics: Conference Series, 1569(2), 022022. https://doi.org/10.1088/1742-6596/1569/2/022022

Perwitasari, A., Septiriana, R., & Tursina, T. (2023). Data preparation Structure untuk Pemodelan Prediktif Jumlah Peserta Ajar Matakuliah. Jurnal Edukasi Dan Penelitian Informatika (JEPIN), 9(1), 7. https://doi.org/10.26418/jp.v8i3.57321

Purwananto, Y., Purwitasari, D., & Nugroho, Y. (2004). PENGKATEGORIAN ISI BERITA BERBAHASA INDONESIA MENGGUNAKAN ALGORITMA SYMBOLIC RULE INDUCTION BERBASIS DECISION TREE. JUTI: Jurnal Ilmiah Teknologi Informasi, 3(1), 55. https://doi.org/10.12962/j24068535.v3i1.a131

Qisthiano, M. R., Kurniawan, T. B., Negara, E. S., & Akbar, M. (2021). Pengembangan Model Untuk Prediksi Tingkat Kelulusan Mahasiswa Tepat Waktu dengan Metode Naïve Bayes. JURNAL MEDIA INFORMATIKA BUDIDARMA, 5(3), 987. https://doi.org/10.30865/mib.v5i3.3030

Raharjo, A. B., Ardianto, A., & Purwitasari, D. (2022). Random Forest Regression Untuk Prediksi Produksi Daya Pembangkit Listrik Tenaga Surya. Briliant: Jurnal Riset Dan Konseptual, 7(4), 1058. https://doi.org/10.28926/briliant.v7i4.1036

Rokach, L. (2016). Decision forest: Twenty years of research. Information Fusion, 27, 111–125. https://doi.org/10.1016/j.inffus.2015.06.005

Saiful rahman, A. F., B, A. A., & Kurniawan, S. D. (2019). IDENTIFIKASI CITRA DAUN DENGAN MENGGUNAKAN METODE DEEP LEARNING CONVOLUTIONAL NEURAL NETWORK (CNN). Jurnal Teknik Elektro Uniba (JTE Uniba), 4(1), 23–28. https://doi.org/10.36277/jteuniba.v4i1.55

Setiawan, H., Munandar, M. A., & Astuti, L. W. (2021). Penggunaan Metode Signature Based dalam Pengenalan Pola Serangan di Jaringan Komputer. Jurnal Teknologi Informasi Dan Ilmu Komputer, 8(3), 517–524. https://doi.org/10.25126/jtiik.2021834200

Shashank, K., & Balachandra, M. (2018). Review on Network Intrusion Detection Techniques using Machine Learning. 2018 IEEE Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER), 104–109. https://doi.org/10.1109/DISCOVER.2018.8673974

Singh, G., & Khare, N. (2022). A survey of intrusion detection from the perspective of intrusion datasets and machine learning techniques. International Journal of Computers and Applications, 44(7), 659–669. https://doi.org/10.1080/1206212X.2021.1885150

Siswoyo, B. (2020). MultiClass Decision Forest Machine Learning Artificial Intelligence. Journal of Applied Informatics and Computing, 4(1), 1–7. https://doi.org/10.30871/jaic.v4i1.1155

Solanki, S., Gupta, C., & Rai, K. (2020). A Survey on Machine Learning based Intrusion Detection System on NSL-KDD Dataset. International Journal of Computer Applications, 176(30), 36–39. https://doi.org/10.5120/ijca2020920343

Taunk, K., De, S., Verma, S., & Swetapadma, A. (2019). A Brief Review of Nearest Neighbor Algorithm for Learning and Classification. 2019 International Conference on Intelligent Computing and Control Systems (ICCS), 1255–1260. https://doi.org/10.1109/ICCS45141.2019.9065747

Wijaya, B., & Pratama, A. (2020). DETEKSI PENYUSUPAN PADA SERVER MENGGUNAKAN METODE INTRUSION DETECTION SYSTEM (IDS) BERBASIS SNORT. Jurnal Sisfokom (Sistem Informasi Dan Komputer), 9(1), 97–101. https://doi.org/10.32736/sisfokom.v9i1.770

Xia, C., Deng, F., Wang, Y., Xu, Z., Liu, G., Xu, J., & Gewiss, H. (2009). Classification Research on Syndromes of TCM Based on SVM. 2009 2nd International Conference on Biomedical Engineering and Informatics, 1–4. https://doi.org/10.1109/BMEI.2009.5305418

Zhang, L., & Suganthan, P. N. (2015). Oblique Decision Tree Ensemble via Multisurface Proximal Support Vector Machine. IEEE Transactions on Cybernetics, 45(10), 2165–2176. https://doi.org/10.1109/TCYB.2014.2366468