Perbandingan Algoritma Klasifikasi untuk Deteksi Intrusi pada Jaringan Komputer (Literature Review)
Main Article Content
Abstract
Dalam era digital yang semakin maju, keamanan jaringan komputer menjadi semakin krusial. Sistem Deteksi Intrusi (IDS) berperan penting dalam mengidentifikasi dan mencegah serangan siber. Studi ini melakukan tinjauan literatur untuk membandingkan berbagai algoritma klasifikasi yang digunakan dalam deteksi intrusi pada jaringan komputer, termasuk Decision Tree, Random Forest, Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Naive Bayes, dan Neural Networks. Hasil menunjukkan bahwa Neural Networks dan Random Forest memiliki akurasi tinggi tetapi memerlukan sumber daya komputasi yang besar. Sebaliknya, Naive Bayes dan Decision Tree menawarkan kecepatan dan efisiensi komputasi yang lebih baik. Kesimpulan ini memberikan panduan bagi peneliti dan praktisi dalam memilih algoritma yang sesuai berdasarkan kebutuhan spesifik aplikasi dan karakteristik data yang digunakan.
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Adhi Tama, B., Nkenyereye, L., & Lim, S. (2021). A Stacking-based Deep Neural Network Approach for Effective Network Anomaly Detection. Computers, Materials & Continua, 66(2), 2217–2227. https://doi.org/10.32604/cmc.2020.012432
Anwar, S., Septian, F., & Septiana, R. D. (2019). Klasifikasi Anomali Intrusion Detection System (IDS) Menggunakan Algoritma Naïve Bayes Classifier dan Correlation-Based Feature Selection. Jurnal Teknologi Sistem Informasi Dan Aplikasi, 2(4), 135. https://doi.org/10.32493/jtsi.v2i4.3453
Azis, A. I. S., Budy Santoso, & Serwin. (2020). LL-KNN ACW-NB: Local Learning K-Nearest Neighbor in Absolute Correlation Weighted Naïve Bayes for Numerical Data Classification. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 4(1), 28–36. https://doi.org/10.29207/resti.v4i1.1348
Bansal, A., & Garg, H. (2021). An Efficient Techniques for Fraudulent detection in Credit Card Dataset: A Comprehensive study. IOP Conference Series: Materials Science and Engineering, 1116(1), 012181. https://doi.org/10.1088/1757-899X/1116/1/012181
Bhatia, V., Choudhary, S., & Ramkumar, K. . (2020). A Comparative Study on Various Intrusion Detection Techniques Using Machine Learning and Neural Network. 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), 232–236. https://doi.org/10.1109/ICRITO48877.2020.9198008
Bhuyan, S., Barman, D. K., & Bhowmick, A. (2018). Wireless Network Security Using Intrusion Detection System. 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI), 934–938. https://doi.org/10.1109/ICOEI.2018.8553724
Chaudhari, K., Connor, P. M., Comden, J., & King, J. (2022). Learning Assisted Demand Charge Mitigation for Workplace Electric Vehicle Charging. IEEE Access, 10, 48283–48291. https://doi.org/10.1109/ACCESS.2022.3172334
Constantinides, C., Shiaeles, S., Ghita, B., & Kolokotronis, N. (2019). A Novel Online Incremental Learning Intrusion Prevention System. 2019 10th IFIP International Conference on New Technologies, Mobility and Security (NTMS), 1–6. https://doi.org/10.1109/NTMS.2019.8763842
Eka Putra, W. S. (2016). Klasifikasi Citra Menggunakan Convolutional Neural Network (CNN) pada Caltech 101. Jurnal Teknik ITS, 5(1). https://doi.org/10.12962/j23373539.v5i1.15696
Fahmi, F. (2021). Model Support Vector Regression (SVR) Berdimensi Tinggi dengan Pendekatan Fungsi Kernel Berbeda untuk Peramalan Harga Saham TLKM: Sebuah Pemodelan Deret Waktu Selama Masa Pandemi Covid-19. Jurnal Infomedia, 5(2), 44. https://doi.org/10.30811/jim.v5i2.2033
Fauzan, A. C., & Hikmah, K. (2022). IMPLEMENTASI ALGORITMA NAIVE BAYES DALAM ANALISIS POLARISASI OPINI MASYARAKAT TERKAIT VAKSIN COVID-19. Rabit : Jurnal Teknologi Dan Sistem Informasi Univrab, 7(2), 122–128. https://doi.org/10.36341/rabit.v7i2.2403
Gupta, M. D., Kunal, S., Girish, M. P., Gupta, A., & Yadav, R. (2022). Artificial intelligence in cardiology: The past, present and future. Indian Heart Journal, 74(4), 265–269. https://doi.org/10.1016/j.ihj.2022.07.004
Ismanto, E., & Cynthia, E. P. (2019). Identification of the Success of Learning Al Islam and Kemuhammadiyahan Using Machine Learning. Proceedings of the International Conference of CELSciTech 2019 - Science and Technology Track (ICCELST-ST 2019). https://doi.org/10.2991/iccelst-st-19.2019.1
Kibriya, H., Amin, R., Kim, J., Nawaz, M., & Gantassi, R. (2023). A Novel Approach for Brain Tumor Classification Using an Ensemble of Deep and Hand-Crafted Features. Sensors, 23(10), 4693. https://doi.org/10.3390/s23104693
Lasniari, S., Jasril, J., Sanjaya, S., Yanto, F., & Affandes, M. (2022). Klasifikasi Citra Daging Babi dan Daging Sapi Menggunakan Deep Learning Arsitektur ResNet-50 dengan Augmentasi Citra. Jurnal Sistem Komputer Dan Informatika (JSON), 3(4), 450. https://doi.org/10.30865/json.v3i4.4167
Mulyani, A., Kurniadi, D., Nashrulloh, M. R., Julianto, I. T., & Regita, M. (2022). THE PREDICTION OF PPA AND KIP-KULIAH SCHOLARSHIP RECIPIENTS USING NAIVE BAYES ALGORITHM. Jurnal Teknik Informatika (Jutif), 3(4), 821–827. https://doi.org/10.20884/1.jutif.2022.3.4.297
Noble, W. S. (2006). What is a support vector machine? Nature Biotechnology, 24(12), 1565–1567. https://doi.org/10.1038/nbt1206-1565
Pandiangan, N., Buono, M. L. C., & Loppies, S. H. D. (2020). Implementation of Decision Tree and Naïve Bayes Classification Method for Predicting Study Period. Journal of Physics: Conference Series, 1569(2), 022022. https://doi.org/10.1088/1742-6596/1569/2/022022
Perwitasari, A., Septiriana, R., & Tursina, T. (2023). Data preparation Structure untuk Pemodelan Prediktif Jumlah Peserta Ajar Matakuliah. Jurnal Edukasi Dan Penelitian Informatika (JEPIN), 9(1), 7. https://doi.org/10.26418/jp.v8i3.57321
Purwananto, Y., Purwitasari, D., & Nugroho, Y. (2004). PENGKATEGORIAN ISI BERITA BERBAHASA INDONESIA MENGGUNAKAN ALGORITMA SYMBOLIC RULE INDUCTION BERBASIS DECISION TREE. JUTI: Jurnal Ilmiah Teknologi Informasi, 3(1), 55. https://doi.org/10.12962/j24068535.v3i1.a131
Qisthiano, M. R., Kurniawan, T. B., Negara, E. S., & Akbar, M. (2021). Pengembangan Model Untuk Prediksi Tingkat Kelulusan Mahasiswa Tepat Waktu dengan Metode Naïve Bayes. JURNAL MEDIA INFORMATIKA BUDIDARMA, 5(3), 987. https://doi.org/10.30865/mib.v5i3.3030
Raharjo, A. B., Ardianto, A., & Purwitasari, D. (2022). Random Forest Regression Untuk Prediksi Produksi Daya Pembangkit Listrik Tenaga Surya. Briliant: Jurnal Riset Dan Konseptual, 7(4), 1058. https://doi.org/10.28926/briliant.v7i4.1036
Rokach, L. (2016). Decision forest: Twenty years of research. Information Fusion, 27, 111–125. https://doi.org/10.1016/j.inffus.2015.06.005
Saiful rahman, A. F., B, A. A., & Kurniawan, S. D. (2019). IDENTIFIKASI CITRA DAUN DENGAN MENGGUNAKAN METODE DEEP LEARNING CONVOLUTIONAL NEURAL NETWORK (CNN). Jurnal Teknik Elektro Uniba (JTE Uniba), 4(1), 23–28. https://doi.org/10.36277/jteuniba.v4i1.55
Setiawan, H., Munandar, M. A., & Astuti, L. W. (2021). Penggunaan Metode Signature Based dalam Pengenalan Pola Serangan di Jaringan Komputer. Jurnal Teknologi Informasi Dan Ilmu Komputer, 8(3), 517–524. https://doi.org/10.25126/jtiik.2021834200
Shashank, K., & Balachandra, M. (2018). Review on Network Intrusion Detection Techniques using Machine Learning. 2018 IEEE Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER), 104–109. https://doi.org/10.1109/DISCOVER.2018.8673974
Singh, G., & Khare, N. (2022). A survey of intrusion detection from the perspective of intrusion datasets and machine learning techniques. International Journal of Computers and Applications, 44(7), 659–669. https://doi.org/10.1080/1206212X.2021.1885150
Siswoyo, B. (2020). MultiClass Decision Forest Machine Learning Artificial Intelligence. Journal of Applied Informatics and Computing, 4(1), 1–7. https://doi.org/10.30871/jaic.v4i1.1155
Solanki, S., Gupta, C., & Rai, K. (2020). A Survey on Machine Learning based Intrusion Detection System on NSL-KDD Dataset. International Journal of Computer Applications, 176(30), 36–39. https://doi.org/10.5120/ijca2020920343
Taunk, K., De, S., Verma, S., & Swetapadma, A. (2019). A Brief Review of Nearest Neighbor Algorithm for Learning and Classification. 2019 International Conference on Intelligent Computing and Control Systems (ICCS), 1255–1260. https://doi.org/10.1109/ICCS45141.2019.9065747
Wijaya, B., & Pratama, A. (2020). DETEKSI PENYUSUPAN PADA SERVER MENGGUNAKAN METODE INTRUSION DETECTION SYSTEM (IDS) BERBASIS SNORT. Jurnal Sisfokom (Sistem Informasi Dan Komputer), 9(1), 97–101. https://doi.org/10.32736/sisfokom.v9i1.770
Xia, C., Deng, F., Wang, Y., Xu, Z., Liu, G., Xu, J., & Gewiss, H. (2009). Classification Research on Syndromes of TCM Based on SVM. 2009 2nd International Conference on Biomedical Engineering and Informatics, 1–4. https://doi.org/10.1109/BMEI.2009.5305418
Zhang, L., & Suganthan, P. N. (2015). Oblique Decision Tree Ensemble via Multisurface Proximal Support Vector Machine. IEEE Transactions on Cybernetics, 45(10), 2165–2176. https://doi.org/10.1109/TCYB.2014.2366468