Penerapan Algoritma SVM untuk Deteksi Review Buatan Bot pada Ulasan Aplikasi Facebook di Google Play Store

Main Article Content

MIkhail Shams Afzal Karim
Albi Akhsanul Hakim
Ama Maulidatul Khairah
Anggraini Puspita Sari

Abstract

App reviews on Google Play Store serve as a crucial source of information for users to select applications that align with their needs. However, there is a growing concern regarding the misuse of app reviews through the creation of fake reviews by bots. These fake reviews can mislead users and negatively impact the reputation of app developers. This research aims to detect bot-generated reviews in Facebook app reviews on Google Play Store using the Support Vector Machine (SVM) algorithm. SVM is a classification algorithm that has proven effective in various classification tasks, including fraud detection. The research utilizes a dataset that has been categorized as genuine or bot-generated texts. The results demonstrate that the SVM algorithm successfully detects bot reviews with a high F1-score of 0.8981, exhibiting no signs of overfitting. This is further supported by the consistent F1-score values across training and testing data. Implementing the SVM algorithm can contribute to enhancing the quality of app reviews and protecting users from misleading information. This research shows that the SVM algorithm can be an effective tool for detecting bot-generated reviews on Facebook application reviews on the Google Play Store.

Article Details

How to Cite
Shams Afzal Karim, M., Akhsanul Hakim, A., Maulidatul Khairah, A., & Puspita Sari, A. (2024). Penerapan Algoritma SVM untuk Deteksi Review Buatan Bot pada Ulasan Aplikasi Facebook di Google Play Store. Journal of Multidisciplinary Inquiry in Science, Technology and Educational Research, 1(3c), 1676–1686. https://doi.org/10.32672/mister.v1i3c.2065
Section
Articles
Author Biographies

MIkhail Shams Afzal Karim, Universitas Pembangunan Nasional "Veteran" Jawa Timur

Program Studi Informatika, Fakultas Ilmu Komputer, Universitas Pembangunan Nasional “Veteran” Jawa Timur, Surabaya, Indonesia

Albi Akhsanul Hakim, Universitas Pembangunan Nasional “Veteran” Jawa Timur

Program Studi Informatika, Fakultas Ilmu Komputer, Universitas Pembangunan Nasional “Veteran” Jawa Timur, Surabaya, Indonesia

Ama Maulidatul Khairah, Universitas Pembangunan Nasional “Veteran” Jawa Timur

Program Studi Informatika, Fakultas Ilmu Komputer, Universitas Pembangunan Nasional “Veteran” Jawa Timur, Surabaya, Indonesia

Anggraini Puspita Sari, Universitas Pembangunan Nasional “Veteran” Jawa Timur

Program Studi Informatika, Fakultas Ilmu Komputer, Universitas Pembangunan Nasional “Veteran” Jawa Timur, Surabaya, Indonesia

References

Bahtiar, S. A. H. (2023). Perbandingan Naïve Bayes dan Logistic Regression dalam Sentiment Analysis pada Review Marketplace menggunakan Rating-Based Labeling (Doctoral dissertation). https://dspace.uii.ac.id/handle/123456789/dspace.uii.ac.id/123456789/46497

Darmawan, A. C. (2023). Pengembangan Aplikasi Berbasis Web dengan Python Flask untuk Klasifikasi Data Menggunakan Metode Decision Tree C4. https://dspace.uii.ac.id/handle/123456789/42602

Djuardi, R., & Rochadiani, T. (2024). Klasifikasi Suara Anjing Menggunakan Pretrained Model Yet Another Mobile Network Berbasis Convolutional Neural Network. Building of Informatics, Technology and Science (BITS), 6(1), 30−42. https://doi.org/10.47065/bits.v6i1.5165

Elmurngi, E. I., & Gherbi, A. (2018). Unfair reviews detection on amazon reviews using sentiment analysis with supervised learning techniques. J. Comput. Sci., 14(5), 714-726.

Fahrimal, Y. (2018). Netiquette: Etika jejaring sosial generasi milenial dalam media sosial.

Fajrina, D. P., Syafriandi, S., Amalita, N., & Salma, A. (2023). Sentiment Analysis of TikTok Application on Twitter using The Naïve Bayes Classifier Algorithm. UNP Journal of Statistics and Data Science, 1(5), 392-398. https://doi.org/10.24036/ujsds/vol1-iss5/103

Fani, S. M., Santoso, R., & Suparti, S. (2021). Penerapan Text Mining Untuk Melakukan Clustering Data Tweet Akun Blibli Pada Media Sosial Twitter Menggunakan K-Means Clustering. Jurnal Gaussian, 10(4), 583-593. Retrieved from https://ejournal3.undip.ac.id/index.php/gaussian/

Habibi, M., & Cahyo, P. W. (2020). Journal Classification Based on Abstract Using Cosine Similarity and Support Vector Machine. JISKA (Jurnal Informatika Sunan Kalijaga), 4(3), 185-192. https://doi.org/10.14421/jiska.2020.43-06

Islamy, M. A. N., & Laksmiwati, I. (2020). Pemanfaatan Media Sosial Sebagai Sarana Promosi Layanan Perpustakaan Institut Seni Indonesia Surakarta. Nusantara Journal of Information and Library Studies (N-JILS), 3(1), 75–87. https://doi.org/10.30999/n-jils.v3i1.804

Melita, R. (2018). Penerapan metode term frequency inverse document frequency (tf-IDF) dan cosine similarity pada sistem temu kembali INFORMASI untuk mengetahui Syarah Hadits Berbasis web (Studi Kasus: Hadits Shahih Bukhari-Muslim) (Bachelor's thesis, Fakultas Sains dan Teknologi UIN Syarif Hidayatullah Jakarta). https://repository.uinjkt.ac.id/dspace/handle/123456789/54945

Nurachim, R. I. (2019). Pemilihan model prediksi indeks harga saham yang dikembangkan berdasarkan algoritma Support Vector Machine (SVM) atau Multilayer Perceptron (MLP) studi kasus: saham PT Telekomunikasi Indonesia Tbk. Jurnal Teknologi Informatika dan Komputer, 5(1), 29-35. https://doi.org/10.37012/jtik.v5i1.243

Parapat, I. M., Furqon, M. T., & Sutrisno, S. (2018). Penerapan Metode Support Vector Machine (SVM) Pada Klasifikasi Penyimpangan Tumbuh Kembang Anak. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 2(10), 3163-3169. https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/2577

Sari, A., Prasetya, D. A., Al Haromainy, M. M., Aditiawan, F. P., Sihananto, A. N., & SJ Saputra, W. (2022, November 29). Analisis Faktor Kesuksesan Penggunaan eBelajar Menggunakan Metode Hot-Fit di STIKI Malang. PROSIDING SEMINAR NASIONAL SAINS DATA, 2(1), 92-102. Retrieved from https://prosiding-senada.upnjatim.ac.id/index.php/senada/article/view/54

Ulfah, A. N., & Anam, M. K. (2020). Analisis Sentimen Hate Speech Pada Portal Berita Online Menggunakan Support Vector Machine (SVM). JATISI (Jurnal Teknik Informatika dan Sistem Informasi), 7(1), 1-10. https://doi.org/10.35957/jatisi.v7i1.196

Widodo, P. P., Handayanto, R. T., & Herlawati, H. (2013). Penerapan data mining dengan Matlab. Bandung: Rekayasa Sains.