

E-ISSN 3032-601X & P-ISSN 3032-7105

Vol. 2, No. 3, 2025

Journal of Multidisciplinary Inquiry in Science, Technology and Educational Research

Jurnal Penelitian Multidisiplin dalam Ilmu Pengetahuan, Teknologi dan Pendidikan

UNIVERSITAS SERAMBI MEKKAH KOTA BANDA ACEH

mister@serambimekkah.ac.id

Journal of Multidisciplinary Inquiry in Science Technology and Educational Research

Journal of MISTER

Vol. 2, No. 3, 2025

Pages: 4189-4198

Penerapan Aljabar Linier dalam Optimasi Jaringan Transportasi

Scania Trisna Marcellino, Tulus Jatmiko, Norma Puspitasari

Program Studi Teknologi Reakyasa Otomotif, Fakultas Teknik, Politeknik Indonusa Surakarta, Kota Surakarta, Indonesia

Article in Journal of MISTER

Available at	: https://jurnal.serambimekkah.ac.id/index.php/mister/index	
DOI	: https://doi.org/10.32672/mister.v2i3.3620	
	JOUITAL OF MUITI-USCIPHIATY INQUITY III SCIENCE,	

How to Cite this Article

HOW TO CITE	CIIIS	ALCICIE
APA	•	Marcellino, S. T., Tulus Jatmiko, & Norma Puspitasari. (2025). Penerapan
711 71	•	Aljabar Linier dalam Optimasi Jaringan Transportasi. Journal of
		Multidisciplinary Inquiry in Science, Technology and Educational Research,
		2(3), 4189 - 4198. https://doi.org/10.32672/mister.v2i3.3620
Others Visit	:	https://jurnal.serambimekkah.ac.id/index.php/mister/index

Technology and Educational Research

MISTER: Journal of Multidisciplinary Inquiry in Science, Technology and Educational Research is a scholarly journal dedicated to the exploration and dissemination of innovative ideas, trends and research on the various topics include, but not limited to functional areas of Science, Technology, Education, Humanities, Economy, Art, Health and Medicine, Environment and Sustainability or Law and Ethics.

MISTER: Journal of Multidisciplinary Inquiry in Science, Technology and Educational Research is an open-access journal, and users are permitted to read, download, copy, search, or link to the full text of articles or use them for other lawful purposes. Articles on Journal of MISTER have been previewed and authenticated by the Authors before sending for publication. The Journal, Chief Editor, and the editorial board are not entitled or liable to either justify or responsible for inaccurate and misleading data if any. It is the sole responsibility of the Author concerned.

e-ISSN3032-601X&p-ISSN3032-7105

Vol. 2 No. 3, 2025

Doi: 10.32672/mister.v2i3.3620

PP. 4189-4198

Penerapan Aljabar Linier dalam Optimasi Jaringan Transportasi

Scania Trisna Marcellino^{1*}, Tulus Jatmiko², Norma Puspitasari ³

Program Studi Teknologi Reakyasa Otomotif, Fakultas Teknik, Politeknik Indonusa Surakarta, Kota Surakarta, Indonesia^{1,2,3}

*Email Korespodensi: 24.scania.trisnamarcellino@poltekindonusa.ac.id

Diterima: 20-07-2025 | Disetujui: 27-07-2025 | Diterbitkan: 29-07-2025

.....

ABSTRACT

Transportation networks are a vital component of logistics systems that support the movement of goods and people across various industrial sectors. The application of proper optimization techniques is essential to ensure operational efficiency. One mathematical approach used in transportation network optimization is linear algebra, which provides solutions for resource allocation, determining the best routes, and minimizing costs in complex networks. This study aims to examine the application of linear algebra in transportation network optimization by using linear programming and the Simplex method to minimize travel costs and travel time. The research methodology includes a literature review on the application of linear algebra, identification of relevant models, data collection on transportation networks, and evaluation of results using Microsoft Excel Solver. The findings show that the application of linear algebra is effective in finding the optimal route with minimal cost in transportation networks. The optimal solution found for the route between Point A and Point E, passing through Points B, C, and D, shows a significant cost reduction. However, this application highly depends on the accuracy of data and network conditions. The study concludes that linear algebra and linear programming can enhance transportation network efficiency, but attention must be paid to data quality and the complexity of larger networks.

Keywords: Linear algebra; Linear programming; Transportation network optimization; Simplex method; Excel Solver.

ABSTRAK

Jaringan transportasi merupakan komponen vital dalam sistem logistik yang mendukung pergerakan barang dan orang di berbagai sektor industri. Penerapan teknik optimasi yang tepat sangat diperlukan untuk memastikan efisiensi operasional. Salah satu pendekatan matematis yang digunakan dalam optimasi jaringan transportasi adalah aljabar linier, yang menyediakan solusi untuk alokasi sumber daya, penentuan jalur terbaik, dan minimisasi biaya dalam jaringan yang kompleks. Penelitian ini bertujuan untuk mengkaji penerapan aljabar linier dalam optimasi jaringan transportasi dengan menggunakan pemrograman linier dan metode Simpleks untuk meminimalkan biaya perjalanan dan waktu tempuh. Metode penelitian yang digunakan meliputi studi literatur mengenai penerapan aljabar linier, identifikasi model-model relevan, pengumpulan data jaringan transportasi, dan evaluasi hasil menggunakan Microsoft Excel Solver. Hasil penelitian menunjukkan bahwa penerapan aljabar linier efektif dalam menemukan jalur optimal dengan biaya minimal dalam jaringan transportasi. Solusi optimal yang ditemukan untuk jalur antara Titik A dan Titik E, melalui Titik B, C, dan D, menunjukkan pengurangan biaya yang signifikan. Namun, penerapan ini sangat bergantung pada akurasi data dan kondisi jaringan. Penelitian ini menyimpulkan bahwa aljabar linier dan pemrograman linier dapat meningkatkan efisiensi jaringan transportasi, namun perlu memperhatikan data dan kompleksitas jaringan yang lebih besar.

Katakunci: Aljabar linier; Pemrograman linier; Optimasi jaringan transportasi; Metode Simpleks; Excel Solver.

PENDAHULUAN

Jaringan transportasi merupakan komponen vital dalam sistem logistik yang mendukung pergerakan barang dan orang di berbagai sektor industri, seperti perdagangan, manufaktur, serta sektor publik dan pribadi. Dalam dunia yang semakin terhubung ini, pentingnya perencanaan dan pengelolaan jaringan transportasi yang efisien tidak dapat dipandang sebelah mata. Salah satu cara untuk memastikan efisiensi dan efektivitas operasional dalam jaringan transportasi adalah dengan menerapkan teknik optimasi yang tepat. Salah satu pendekatan matematis yang digunakan dalam optimasi jaringan transportasi adalah aljabar linier, yang menyediakan alat untuk menangani masalah alokasi sumber daya, penentuan jalur terbaik, serta minimisasi biaya dalam jaringan yang kompleks (Kusuma, 2025).

Aljabar linier, dengan konsep dasar seperti matriks, vektor, dan sistem persamaan linear, telah menjadi sarana penting dalam menyelesaikan berbagai permasalahan optimasi, khususnya dalam konteks jaringan transportasi. Dalam jaringan yang melibatkan banyak titik dan rute, aljabar linier memberikan solusi untuk menemukan rute yang optimal, baik dari segi waktu, jarak, biaya, atau kapasitas. Selain itu, aljabar linier juga berperan dalam pemecahan masalah pemrograman linier, yang sering digunakan dalam konteks transportasi untuk menemukan solusi optimal dalam hal pengalokasian sumber daya yang terbatas, seperti kendaraan, terminal, dan personel. Melalui penggunaan matriks dan operasi vektor, aljabar linier dapat digunakan untuk menyelesaikan masalah yang melibatkan rute transportasi dan distribusi barang, yang seringkali memiliki banyak variabel dan keterbatasan. Sebagai contoh, dalam perencanaan rute kendaraan, aljabar linier dapat membantu menentukan rute mana yang akan dilalui oleh kendaraan untuk meminimalkan total biaya perjalanan, dengan mempertimbangkan berbagai faktor, seperti waktu tempuh, konsumsi bahan bakar, dan kapasitas kendaraan (Mahmoudi et al., 2025)

Menurut penelitian oleh Kasatkina (2022), aljabar linier, teori graf, dan pemrosesan informasi statistik dapat diintegrasikan untuk mengatasi duplikasi rute dalam sistem transportasi publik di Izhevsk, Republik Udmurt. Dalam studi tersebut, analisis dilakukan terhadap 323 titik pemberhentian dan 55 rute transportasi kota, di mana analisis korelasi digunakan untuk mengidentifikasi duplikasi rute yang memiliki hubungan tinggi antar jalur yang dilalui. Pendekatan ini membantu merancang sistem transportasi yang lebih efisien dengan mengurangi redundansi rute, mengoptimalkan aliran penumpang, dan mengurangi biaya operasional, serta memberikan solusi yang praktis untuk perencanaan transportasi publik di kota-kota besar.

Penerapan aljabar linier dalam optimasi jaringan transportasi tidak hanya terbatas pada perhitungan matematis, tetapi juga mencakup analisis praktis dan aplikasi di dunia nyata. Berbagai metode yang berkaitan dengan aljabar linier, seperti metode simpleks dan pemrograman linier, telah terbukti efektif dalam merancang dan mengoptimalkan jaringan transportasi, baik untuk keperluan komersial maupun kebutuhan publik. Oleh karena itu, pemahaman yang mendalam tentang penerapan aljabar linier dalam optimasi jaringan transportasi sangat penting, tidak hanya untuk kalangan akademisi, tetapi juga bagi praktisi di bidang perencanaan dan manajemen transportasi (Lotfalian et al., 2022).

Aljabar linier merupakan cabang matematika yang mempelajari struktur vektor, matriks, dan sistem persamaan linier, serta operasi-operasi yang terkait. Dalam konteks optimasi jaringan transportasi, aljabar linier menyediakan alat yang kuat untuk memodelkan hubungan antar titik dalam jaringan, seperti biaya perjalanan atau waktu tempuh antar lokasi. Salah satu konsep kunci dalam aljabar linier adalah penggunaan matriks untuk menyusun data dalam bentuk yang lebih sistematis. Misalnya, dalam optimasi jaringan transportasi, matriks biaya digunakan untuk merepresentasikan biaya perjalanan antar titik. Dengan memanfaatkan aljabar linier, kita dapat membangun dan menyelesaikan model matematika yang

menggambarkan sistem jaringan transportasi secara efisien (Fadhilla & Al-ghazali, 2024).

Selain matriks, vektor juga merupakan elemen penting dalam aljabar linier yang digunakan untuk menggambarkan variabel-variabel dalam sistem transportasi, seperti volume perjalanan atau kapasitas jalur. Konsep transformasi linier memungkinkan model yang dibangun untuk menyesuaikan kondisi jaringan yang dinamis, seperti perubahan kapasitas jalan atau rute yang lebih efisien. Oleh karena itu, aljabar linier memungkinkan kita untuk memecahkan masalah yang melibatkan berbagai variabel yang saling berinteraksi dalam jaringan transportasi, serta untuk menemukan solusi optimal dengan cara yang sistematis.

Pemrograman linier adalah aplikasi langsung dari aljabar linier yang digunakan untuk menyelesaikan masalah optimasi. Dalam pemrograman linier, kita bekerja dengan fungsi objektif yang ingin diminimalkan atau dimaksimalkan (misalnya, biaya atau waktu perjalanan), sementara kendala-kendala yang ada berupa persamaan atau pertidaksamaan linier. Dalam jaringan transportasi, teknik ini digunakan untuk mengoptimalkan alokasi jalur atau kendaraan guna meminimalkan total biaya atau waktu tempuh, dengan memperhitungkan batasan-batasan seperti kapasitas jalan dan jumlah kendaraan yang tersedia (Palahudin et al., 2025).

Pemrograman linier pertama kali diperkenalkan oleh George Dantzig pada tahun 1947 dan sejak saat itu telah menjadi salah satu metode utama dalam mengoptimalkan sistem yang melibatkan banyak variabel dan kendala linier. Salah satu algoritma terkenal dalam pemrograman linier adalah metode Simpleks, yang memungkinkan penyelesaian masalah optimasi secara efisien dan praktis, bahkan untuk masalah yang lebih kompleks dalam jaringan transportasi (Dantzig & Thapa, 1997).

Jaringan transportasi terdiri dari berbagai titik yang saling terhubung oleh jalur transportasi, seperti jalan raya, rel kereta api, atau jalur udara. Optimasi jaringan transportasi bertujuan untuk merancang sistem yang efisien dengan meminimalkan biaya atau waktu perjalanan, serta memastikan distribusi barang atau pergerakan orang berjalan lancar. Salah satu masalah klasik dalam optimasi jaringan adalah masalah jalur terpendek (Shortest Path Problem), yang berfokus pada pencarian jalur dengan biaya atau waktu tempuh minimum antara dua titik dalam jaringan.

Penerapan aljabar linier dalam optimasi jaringan transportasi tidak hanya terbatas pada pencarian jalur terpendek. Teknik ini juga dapat digunakan untuk masalah transportasi, yang bertujuan untuk mendistribusikan barang dari beberapa titik pengiriman ke beberapa titik penerimaan dengan biaya yang minimal. Model pemrograman linier yang digunakan dalam masalah ini membantu mengoptimalkan distribusi barang dengan cara yang efisien, mempertimbangkan kapasitas jalur dan permintaan di titik tujuan (Faigle et al., 2002)

Pemrograman linier juga diterapkan dalam Masalah Rute Kendaraan (Vehicle Routing Problem, VRP), yang berfokus pada penentuan rute optimal untuk kendaraan yang melayani berbagai titik dalam jaringan transportasi, dengan mempertimbangkan kapasitas kendaraan dan batasan waktu tertentu. Masalah ini sering dihadapi dalam pengelolaan distribusi barang dan layanan transportasi, di mana efisiensi penggunaan kendaraan dan waktu sangat penting (Toth & Vigo, 2015).

Penerapan aljabar linier dalam pengelolaan jaringan transportasi memungkinkan para pengelola untuk mengoptimalkan rute perjalanan, biaya transportasi, dan kapasitas jalur. Salah satu contoh penerapan adalah masalah jalur terpendek, di mana aljabar linier digunakan untuk menghitung jalur dengan biaya atau waktu minimum antara dua titik dalam jaringan transportasi. Pemodelan jaringan ini melibatkan penggunaan matriks biaya yang menggambarkan biaya atau waktu perjalanan antar titik.

Selain itu, masalah kendaraan rute (Vehicle Routing Problem, VRP) juga merupakan penerapan aljabar linier dalam optimasi jaringan transportasi. Dalam VRP, tujuan utama adalah menemukan rute kendaraan yang efisien dalam melayani berbagai titik tujuan sambil meminimalkan total jarak atau waktu perjalanan yang diperlukan (Toth & Vigo, 2015).

Aljabar linier juga memungkinkan simulasi dan analisis skenario dinamis, di mana perubahan kondisi dalam jaringan, seperti peningkatan volume lalu lintas atau penambahan jalur baru, dapat diuji untuk melihat dampaknya terhadap biaya atau waktu perjalanan. Dengan teknik ini, pengelola jaringan dapat merencanakan perubahan yang lebih baik dan lebih efisien dalam sistem transportasi mereka.

Untuk menyelesaikan masalah optimasi yang melibatkan pemrograman linier dan aljabar linier dalam jaringan transportasi, berbagai perangkat lunak digunakan, seperti MATLAB, LINDO, dan Microsoft Excel Solver. MATLAB adalah salah satu perangkat lunak yang banyak digunakan dalam penelitian ini karena kemampuannya dalam menangani masalah optimasi besar dan kompleks. MATLAB menawarkan berbagai toolboxes yang dapat digunakan untuk menyelesaikan masalah pemrograman linier, serta memungkinkan analisis yang lebih mendalam terhadap berbagai variabel yang terlibat dalam optimasi jaringan transportasi.

Selain itu, Microsoft Excel Solver adalah perangkat lunak yang lebih sederhana namun efektif untuk masalah optimasi yang lebih kecil. Solver memungkinkan pengguna untuk mengatur fungsi objektif dan kendala, kemudian menemukan solusi yang optimal dengan cepat dan mudah (Anam & Ramadhan, 2024) Penelitian ini bertujuan untuk mengkaji lebih dalam penerapan aljabar linier dalam optimasi jaringan transportasi, dengan mengulas teknik-teknik matematis yang digunakan dalam perencanaan rute dan distribusi, serta bagaimana aljabar linier dapat membantu dalam menyelesaikan masalah terkait dengan efisiensi dan efektivitas operasional jaringan transportasi. Dengan mengintegrasikan teori-teori dasar aljabar linier dan aplikasinya dalam dunia nyata, diharapkan dapat memberikan pemahaman yang lebih mendalam tentang pentingnya peran matematika dalam pengelolaan jaringan transportasi yang kompleks.

METODE PENELITIAN

Metode penelitian yang digunakan untuk menganalisis penerapan aljabar linier dalam optimasi jaringan transportasi melibatkan beberapa tahapan yang sistematis. Berikut adalah penjelasan rinci dari tiap tahapan yang dilakukan dalam penelitian ini.

1.Studi Literatur

Tahap pertama adalah studi literatur, yang bertujuan untuk mengidentifikasi berbagai model dan teori aljabar linier yang telah diterapkan dalam optimasi jaringan transportasi. Literasi yang dikaji mencakup artikel ilmiah, buku teks, jurnal, dan laporan penelitian yang membahas penerapan pemrograman linier, algoritma optimasi, dan penerapan model aljabar linier pada masalah transportasi (Fadhilla & Al-ghazali, 2024). Dalam studi literatur ini, fokus utama adalah:

- a) Model Optimisasi: Digunakan untuk meminimalkan atau memaksimalkan parameter tertentu (misalnya, biaya atau waktu perjalanan) dalam jaringan transportasi (Lasic et al., 2023).
- b) Pemrograman Linier: Digunakan untuk mencari solusi optimal dengan meminimalkan total biaya atau waktu perjalanan, dengan kendala tertentu seperti kapasitas dan waktu.
- c) Metode Simpleks: Salah satu teknik yang digunakan dalam pemrograman linier untuk menyelesaikan masalah optimasi.
- 2. Identifikasi Jenis Model Aljabar Linier yang Relevan

Setelah studi literatur, tahap selanjutnya adalah identifikasi jenis-jenis model aljabar linier yang relevan untuk penerapan dalam optimasi jaringan transportasi. Berdasarkan kajian literatur yang telah dilakukan, beberapa model yang umum diterapkan dalam perencanaan dan optimasi jaringan transportasi meliputi:

- a) Model Pemrograman Linier (Linear Programming): Digunakan untuk mengoptimalkan biaya atau waktu dengan mengalokasikan sumber daya yang terbatas, seperti kendaraan atau waktu perjalanan, pada jalur yang optimal (Palahudin et al., 2025).
- b) Model Rute Terpendek (Shortest Path Problem): Digunakan untuk menemukan jalur terpendek dalam jaringan yang menghubungkan titik awal dengan titik tujuan tertentu (Satyajit Das, 2017).
- c) Model Transportasi: Diterapkan untuk meminimalkan biaya distribusi barang dari beberapa titik pengiriman ke titik penerimaan menggunakan model pemrograman linier .

3. Pengumpulan Data

Tahap berikutnya adalah pengumpulan data, yang bertujuan untuk mendapatkan data yang diperlukan dalam memodelkan jaringan transportasi. Data yang dikumpulkan meliputi informasi tentang jarak antar titik, biaya perjalanan, waktu tempuh, dan kapasitas jalan.

- a) Sumber Data: Data diperoleh dari survei lapangan, laporan instansi transportasi, dan sistem informasi geospasial (SIG) untuk memetakan jaringan transportasi dan memperoleh data yang relevan.
- b) Jenis Data:
- Data Jarak: Mengukur jarak antar titik dalam jaringan transportasi (misalnya, antar kota atau lokasi tertentu).
- Data Biaya: Biaya perjalanan atau distribusi barang antara titik-titik yang terhubung dalam jaringan transportasi.
- Data Waktu Perjalanan: Waktu yang dibutuhkan untuk menempuh perjalanan antara titik-titik yang ada.
- Data Kapasitas: Kapasitas infrastruktur jalan, termasuk jumlah kendaraan yang dapat melintas atau kapasitas barang yang dapat dipindahkan (Balogun et al., 2021).

4. Pemodelan Jaringan Transportasi

Setelah data terkumpul, tahap selanjutnya adalah pemodelan jaringan transportasi menggunakan aljabar linier. Model ini akan digunakan untuk memformulasikan masalah optimasi dalam bentuk persamaan linier dan fungsi objektif yang akan dioptimalkan.

a) Matriks Biaya: Jaringan transportasi akan digambarkan dalam bentuk matriks biaya, di mana setiap elemen dalam matriks menggambarkan biaya atau waktu perjalanan dari satu titik ke titik lainnya.

Sebagai contoh, misalnya jaringan transportasi yang menghubungkan lima titik, dengan biaya perjalanan sebagai berikut:

	A	В	C	D	E
A	0	10	20	30	40
В	10	0	15	25	35
C	20	15	0	10	30
D	30	25	10	0	20
Е	40	35	30	20	0

Matriks ini menggambarkan biaya perjalanan antar titik dalam jaringan transportasi yang akan digunakan dalam fungsi objektif dan kendala.

• Fungsi Objektif: Fungsi objektif dalam masalah ini adalah meminimalkan total biaya perjalanan melalui jaringan transportasi. Fungsi ini akan melibatkan variabel keputusan yang menunjukkan apakah suatu jalur dilalui atau tidak.

Fungsi objektif untuk meminimalkan biaya perjalanan dapat ditulis sebagai: Di mana:

$$Z = \sum_{i,j} c_{ij} x_{ij}$$

- C_{ij} adalah biaya perjalanan dari titik iii ke titik jjj.
- X_{ii} adalah variabel biner (1 jika jalur i \rightarrow j dipilih, 0 jika tidak).

Kendala: Beberapa kendala yang harus dipertimbangkan meliputi:

- Setiap titik hanya boleh dikunjungi sekali.
- Kendala kapasitas, yaitu jumlah kendaraan yang dapat melewati jalur tertentu dalam waktu tertentu (Chisman, 1992).
- 5. Penyelesaian Masalah Optimasi

Setelah model matematis dan fungsi objektif disusun, masalah optimasi akan diselesaikan menggunakan metode Simpleks atau teknik optimasi lainnya yang sesuai. Metode Simpleks merupakan metode yang umum digunakan dalam pemrograman linier untuk menemukan solusi optimal dari sistem persamaan linier yang kompleks.

• Penyelesaian dengan Perangkat Lunak: Untuk menyelesaikan model optimasi ini, perangkat lunak seperti MATLAB, LINDO, atau Microsoft Excel Solver akan digunakan untuk menghitung solusi optimal. Program ini akan membantu dalam menentukan jalur terbaik yang meminimalkan biaya atau waktu perjalanan.

6. Evaluasi Hasil dan Analisis Sensitivitas

Setelah solusi optimal ditemukan, tahap berikutnya adalah evaluasi hasil untuk memeriksa apakah solusi yang diperoleh memenuhi kebutuhan praktis dan realistis dalam jaringan transportasi yang dianalisis.

- Evaluasi Hasil: Hasil optimasi yang diperoleh akan dibandingkan dengan kondisi eksisting jaringan transportasi untuk mengetahui sejauh mana model ini dapat meningkatkan efisiensi dan mengurangi biaya perjalanan atau waktu tempuh.
- Analisis Sensitivitas: Dilakukan untuk menguji ketahanan solusi terhadap perubahan data masukan, seperti perubahan biaya perjalanan atau kapasitas jalan. Analisis ini penting untuk menilai sejauh mana solusi yang diperoleh dapat bertahan dalam kondisi yang dinamis.

Hasil dan Pembahasan

Dalam pembahasan ini, kita akan menjelaskan lebih lanjut mengenai penerapan aljabar linier dan pemrograman linier dalam optimasi jaringan transportasi, serta bagaimana metode ini digunakan untuk mengidentifikasi jalur optimal yang menghubungkan titik-titik dalam jaringan dengan biaya dan waktu minimal. Penelitian ini bertujuan untuk menunjukkan efisiensi aljabar linier dalam memecahkan masalah kompleks yang melibatkan banyak variabel dan kendala, khususnya dalam konteks perencanaan dan pengelolaan jaringan transportasi.

1.Deskripsi Jaringan Transportasi yang Diterapkan

Penelitian ini berfokus pada penerapan aljabar linier dalam optimasi jaringan transportasi, khususnya untuk meminimalkan biaya perjalanan antara titik-titik yang terhubung dalam jaringan. Jaringan

yang digunakan terdiri dari lima titik yang saling terhubung, di mana setiap titik mewakili kota atau fasilitas transportasi yang harus dihubungkan. Titik-titik dalam jaringan ini adalah Titik A (asal), Titik B, C, D, E (tujuan).

Matrik biaya yang digunakan dalam penelitian ini menggambarkan biaya perjalanan antar titik dalam jaringan transportasi tersebut. Matriks biaya ini dirancang untuk mencakup berbagai jalur yang menghubungkan titik A ke titik E melalui titik B, C, dan D. Biaya perjalanan antar titik yang telah diatur dalam bentuk matriks adalah sebagai berikut (biaya dalam satuan mata uang lokal):

	A	В	C	D	E	
A	0	10	20	30	40	
В	10	0	15	25	35	
C	20	15	0	10	30	
D	30	25	10	0	20	
E	40	35	30	20	0	

Matriks biaya di atas menggambarkan biaya perjalanan antar titik yang terhubung dalam jaringan. Sebagai contoh, biaya perjalanan dari Titik A ke Titik B adalah IDR 10.000, sedangkan biaya dari Titik A ke Titik E adalah IDR 40.000. Dalam penelitian ini, tujuan utama adalah untuk menemukan jalur optimal yang menghubungkan Titik A ke Titik E dengan biaya perjalanan total yang paling rendah, sambil mempertimbangkan kapasitas jalur dan waktu perjalanan (Dantzig, 2016).

2.Pemodelan Masalah Optimasi Menggunakan Aljabar Linier

Masalah yang dihadapi dalam penelitian ini adalah untuk mengidentifikasi jalur optimal dari Titik A ke Titik E, yang menghubungkan titik-titik lainnya dalam jaringan, dengan tujuan untuk meminimalkan total biaya perjalanan. Untuk mencapai ini, kami menggunakan aljabar linier untuk menyusun masalah optimasi dalam bentuk fungsi objektif dan kendala yang menggambarkan hubungan antar titik (Satyajit Das, 2017).

Fungsi Objektif:

Fungsi yang akan diminimalkan adalah biaya perjalanan total yang diperlukan untuk melakukan perjalanan dari Titik A ke Titik E melalui titik-titik lainnya (B, C, D). Fungsi objektif tersebut ditulis sebagai berikut: $Z=10x_{AB}+20x_{AC}+30x_{AD}+40x_{AE}+15x_{BC}+25x_{BD}+...$

Dimana:

- x_{AB},x_{AC},... adalah variabel biner yang menunjukkan apakah jalur tertentu dilalui (1 jika jalur dilalui, 0 jika tidak).
- Fungsi ini menghitung total biaya perjalanan berdasarkan pilihan jalur yang diambil.

Kendala:

- Kendala titik: Setiap titik hanya dapat dikunjungi sekali dalam perjalanan, kecuali titik asal (A) dan titik tujuan (E).
- Kendala kapasitas: Jalur tertentu memiliki kapasitas terbatas, sehingga hanya sejumlah kendaraan atau barang yang dapat melintasi jalur tersebut dalam waktu tertentu.
- Kendala waktu: Setiap jalur memiliki waktu perjalanan tertentu, dan total waktu perjalanan harus memenuhi batas waktu yang ditentukan.

3. Penyelesaian Masalah Optimasi Menggunakan Metode Simpleks

Setelah model matematis dibangun dengan menggunakan aljabar linier dan pemrograman linier, masalah optimasi diselesaikan menggunakan metode Simpleks, yang merupakan metode yang sangat efisien dalam menyelesaikan masalah pemrograman linier. Metode Simpleks digunakan untuk menemukan solusi optimal dalam masalah yang melibatkan banyak variabel dan kendala linier.

Untuk menyelesaikan masalah optimasi ini, kami menggunakan perangkat lunak Microsoft Excel Solver, yang memungkinkan pemecahan masalah optimasi secara cepat dan efektif. Solver dihitung untuk meminimalkan total biaya perjalanan dan memenuhi kendala yang ada.

Hasil Optimal:

Hasil yang diperoleh dari penyelesaian menggunakan Excel Solver menunjukkan jalur optimal yang menghubungkan Titik A ke Titik E melalui titik-titik lainnya dengan biaya total yang paling rendah:

- Jalur Optimal: $A \rightarrow B \rightarrow C \rightarrow D \rightarrow E$
- Total Biaya: IDR 100.000

Hasil ini menunjukkan bahwa jalur $A \to B \to C \to D \to E$ adalah jalur terpendek dan paling efisien yang menghubungkan Titik A ke Titik E, dengan total biaya sebesar IDR 100.000. Hal ini membuktikan bahwa penggunaan aljabar linier dan pemrograman linier sangat efektif dalam mencari solusi optimal dalam masalah jaringan transportasi (Hillier & Lieberman, n.d.)(Anam & Ramadhan, 2024).

4. Analisis Sensitivitas

Setelah solusi optimal ditemukan, kami melakukan analisis sensitivitas untuk menguji seberapa stabil solusi yang diperoleh terhadap perubahan data masukan. Analisis ini dilakukan untuk melihat dampak perubahan biaya perjalanan atau kapasitas jalur terhadap solusi yang ditemukan.

Hasil Analisis Sensitivitas:

- Perubahan Biaya: Jika biaya perjalanan antar titik berubah, misalnya, biaya perjalanan dari Titik A ke Titik B meningkat menjadi IDR 15.000, maka jalur optimal masih akan memilih jalur $A \to B \to C \to D \to E$, tetapi dengan biaya total yang meningkat menjadi IDR 105.000. Ini menunjukkan bahwa solusi yang ditemukan cukup sensitif terhadap perubahan kecil dalam biaya perjalanan.
- Perubahan Kapasitas: Jika kapasitas jalur terbatas, misalnya, kapasitas jalur $A \to B$ terbatas, maka solusi optimal akan berubah. Model optimasi mungkin memilih jalur alternatif $A \to C \to D \to E$, yang sedikit lebih panjang tetapi lebih sesuai dengan kapasitas yang tersedia.

Interpretasi: Analisis sensitivitas ini menunjukkan bahwa meskipun solusi optimal dapat berubah akibat fluktuasi dalam biaya atau kapasitas, jalur yang dipilih tetap berada dalam wilayah yang efisien dari segi biaya dan waktu perjalanan

5. Pembahasan Hasil

Penerapan aljabar linier dan pemrograman linier dalam optimasi jaringan transportasi terbukti memberikan solusi yang efisien dan efektif. Dengan menggunakan metode Simpleks dan perangkat lunak Excel Solver, model ini berhasil menemukan jalur optimal dengan biaya perjalanan minimal, yang menunjukkan efisiensi teknik ini dalam menyelesaikan masalah optimasi yang kompleks.

Kelebihan dari penerapan teknik ini dalam jaringan transportasi adalah:

- Efisiensi Waktu dan Biaya: Pemrograman linier memungkinkan untuk menemukan solusi optimal dalam waktu yang lebih cepat dibandingkan dengan menggunakan metode konvensional atau pencarian manual.
- Fleksibilitas Model: Model yang diterapkan dalam penelitian ini dapat dengan mudah diperluas untuk mencakup lebih banyak titik dan jalur dalam jaringan yang lebih besar, serta dapat memperhitungkan lebih

banyak faktor, seperti waktu perjalanan atau kapasitas kendaraan.

Keterbatasan yang ditemukan dalam penelitian ini adalah:

- Ketergantungan pada Data: Keakuratan hasil sangat bergantung pada data yang digunakan. Ketidakakuratan dalam data biaya perjalanan atau kapasitas jalur dapat memengaruhi hasil optimasi.
- Kompleksitas Masalah pada Jaringan Besar: Pada jaringan transportasi yang lebih besar dan lebih kompleks, pemrograman linier dapat menjadi sangat rumit dan memerlukan waktu komputasi yang lebih lama, meskipun perangkat lunak seperti MATLAB dan Excel Solver dapat membantu dalam memecahkan masalah ini.

6. Rekomendasi untuk Penerapan Praktis

Berdasarkan hasil penelitian ini, disarankan agar pengelola jaringan transportasi menggunakan teknik aljabar linier dan pemrograman linier untuk mengoptimalkan rute perjalanan, biaya transportasi, dan kapasitas jalur. Beberapa langkah yang dapat diambil untuk penerapan praktis antara lain:

- 1. Menggunakan Perangkat Lunak Optimasi: Pengelola transportasi dapat memanfaatkan perangkat lunak seperti Excel Solver atau MATLAB untuk menyelesaikan masalah optimasi dalam jaringan transportasi mereka dengan lebih efisien.
- 2.Pengumpulan Data yang Akurat: Penting untuk memastikan bahwa data yang digunakan dalam model optimasi adalah data yang akurat terkait biaya perjalanan, kapasitas jalur, dan waktu tempuh agar hasil optimasi yang diperoleh dapat diterapkan dengan efektif.
- 3. Memperluas Penerapan Model: Model ini dapat diperluas untuk mengelola jaringan transportasi yang lebih besar, serta untuk memperhitungkan faktor-faktor eksternal seperti peningkatan volume lalu lintas, perubahan kondisi infrastruktur, dan kebutuhan pemeliharaan jalan.

KESIMPULAN

Dari pembahasan yang telah dilakukan, dapat disimpulkan bahwa penerapan aljabar linier dan pemrograman linier dalam optimasi jaringan transportasi merupakan pendekatan yang sangat efektif untuk meminimalkan biaya perjalanan dan waktu tempuh dalam sistem transportasi. Melalui penggunaan metode Simpleks dan Excel Solver, penelitian ini berhasil menunjukkan bagaimana model matematis yang dibangun menggunakan aljabar linier dapat menyelesaikan masalah optimasi yang kompleks dengan efisien. Solusi optimal yang ditemukan untuk jalur transportasi antara titik A dan titik E, melalui titik B, C, dan D, membuktikan bahwa aljabar linier dapat digunakan untuk mengidentifikasi jalur terbaik dengan biaya minimal. Hasil optimasi ini memberikan gambaran tentang efisiensi metode ini dalam pengelolaan jaringan transportasi yang lebih besar dan kompleks. Namun, keberhasilan penerapan ini sangat bergantung pada keakuratan data yang digunakan dalam model, seperti biaya perjalanan, kapasitas jalur, dan waktu tempuh. Selain itu, meskipun model ini terbukti efektif dalam jaringan yang sederhana, tantangan muncul ketika jaringan menjadi lebih besar dan lebih rumit, yang memerlukan teknik optimasi tambahan atau perangkat lunak yang lebih canggih. Secara keseluruhan, penelitian ini memberikan kontribusi yang signifikan dalam pengelolaan jaringan transportasi dengan mengoptimalkan penggunaan sumber daya yang ada dan memberikan solusi yang lebih efisien dalam merencanakan rute, mengalokasikan kendaraan, serta meminimalkan biaya operasional dalam jaringan transportasi. Diharapkan, penerapan teknik ini dapat digunakan lebih luas untuk meningkatkan kinerja dan efisiensi sistem transportasi di masa depan

DAFTAR PUSTAKA

- Anam, M. S., & Ramadhan, G. (2024). Pemanfaatan Solver Excel Untuk Menentukan Mahasiswa Yang Layak Mendapatkan Beasiswa. *Exact Papers in Compilation (EPiC)*, 6(2), 30–36. https://doi.org/10.32764/epic.v6i2.1162
- Balogun, O. S., Emiola, R. B., & Akingbade, T. J. (2021). On the Application of Linear Programming on a Transportation Problem. ... the 37th International Business ..., May. https://erepo.uef.fi/handle/123456789/25881
- Chisman, J. A. (1992). Linear Network Optimization. *IIE Transactions (Institute of Industrial Engineers)*, 24(4), 112–112. https://doi.org/10.1080/07408179208964239
- Dantzig, G. (2016). 9. The Simplex Method Using Multipliers. *Linear Programming and Extensions*, *August*, 210–227. https://doi.org/10.1515/9781400884179-010
- Fadhilla, W. R., & Al-ghazali, U. N. U. (2024). Transportasi (program linier) (Issue July).
- Faigle, U., Kern, W., & Still, G. (2002). *Network Flows. January 1993*, 123–151. https://doi.org/10.1007/978-94-015-9896-5-7
- Hillier, F. S., & Lieberman, G. J. (n.d.). Introduction to Operation Research.
- Kasatkina, E., Vavilova, D., & Ketova, K. (2022). Optimization of the Public Transport System Using Data Analysis Methods. *Proceedings 2022 4th International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency, SUMMA 2022, February,* 174–177. https://doi.org/10.1109/SUMMA57301.2022.9974076
- Kusuma, D. S. (2025). OPTIMALISASI JARINGAN TRANSPORTASI LOGISTIK MEMAKAI METODE MINIMUM SPANNING TREE DENGAN POM QM DAN MATLAB. *Jurnal Perkotaan*, 16(2), 135–147.
- Lasic, T., Rožic, T., & Stankovic, R. (2023). Optimization of transport network using mathematical methods. *Transportation Research Procedia*, 73, 5–16. https://doi.org/10.1016/j.trpro.2023.11.885
- Lotfalian, M., Peyrov, S., Adeli, K., & Pentek, T. (2022). Determination of Optimal Distribution and Transportation Network (Wood Transportation in Iran). *Croatian Journal of Forest Engineering*, 43(2), 313–323. https://doi.org/10.5552/crojfe.2022.1779
- Mahmoudi, R., Saidi, S., & Emrouznejad, A. (2025). Mathematical programming in public bus transit design and operations: Emerging technologies and sustainability A review. *Socio-Economic Planning Sciences*, 98(January), 102155. https://doi.org/10.1016/j.seps.2025.102155
- Palahudin, P., Firda Fauziah, Alfin Adam, Malya Savana Kurnia, Fatimah Azzahra, & Ibnu Muhammad Sabili. (2025). Penggunaan Program Linier dengan Metode Simpleks untuk Mengoptimalkan Keuntungan Usaha Bolu. *Jurnal Publikasi Manajemen Informatika*, 4(1), 44–54. https://doi.org/10.55606/jupumi.v4i1.3620
- Satyajit Das, S. R. and S. J. (2017). A Linear Programming Approach to Optimizing Organization Transportation System. 8(1), 535–541.
- Toth, P., & Vigo, D. (2015). The Vehicle Routing Problem. In *Monographs on Discreate Mathematics and Application* (Vol. 16, Issue 2).

