

Vol. 1, No. 3b, Juli 2024 State of the stat

Journal of Multidisciplinary Inquiry in Science, Technology and Educational Research

Jurnal Penelitian Multidisiplin dalam Ilmu Pengetahuan, Teknologi dan Pendidikan

UNIVERSITAS SERAMBI MEKKAH KOTA BANDA ACEH

mister@serambimekkah.ac.id

Journal of Multidisciplinary Inquiry in Science Technology and Educational Research

Journal of MISTER

Vol. 1, No. 3b, Juli 2024 Pages: 940-945

Berpikir Komputasi Matematika Siswa pada Pelajaran Matematika (Systematic Literature Review)

Putri Wardani & Yahfizham

Prodi Pendidikan Matematika, Fakultas Ilmu Tarbiyah dan Keguruan, Universitas Islam Negeri Sumatera Utara

Article in Journal of MISTER

Available at	: https://jurnal.serambimekkah.ac.id/index.php/mister	
DOI	: https://doi.org/10.32672/mister.v1i3b.1774	
***************************************	Journal of Multi-disciplinary inquiry in Science,	

Technology and Educational Research

How to Cite this Article

110" 00 01 00 011.	10 111 0	1010							
APA	•	Wardani,	Р.,	&	Yahfizham.	(2024).	Berpikir	Komputasi	Matematika
THI TI	•	Siswa	pada		Pelajaran	Matemat	ika (Sy	stematic	Literature
		Review).	MIST	ER:	Journal of	f Multidi	sciplinar	y Inquiry	in Science,
		Technolo,	gу	a	nd Educa	tional	Research	, 1(3b),	940 - 945.
		https://	doi.o	rg/	10.32672/mi	ster.v1i3	3b. 1774		
Others Visit	•	https://j	jurnal	. s∈	erambimekkah.	ac.id/ind	dex.php/mis	ster	

MISTER: Journal of Multidisciplinary Inquiry in Science, Technology and Educational Research is a scholarly journal dedicated to the exploration and dissemination of innovative ideas, trends and research on the various topics include, but not limited to functional areas of Science, Technology, Education, Humanities, Economy, Art, Health and Medicine, Environment and Sustainability or Law and Ethics.

MISTER: Journal of Multidisciplinary Inquiry in Science, Technology and Educational Research is an open-access journal, and users are permitted to read, download, copy, search, or link to the full text of articles or use them for other lawful purposes. Articles on Journal of MISTER have been previewed and authenticated by the Authors before sending for publication. The Journal, Chief Editor, and the editorial board are not entitled or liable to either justify or responsible for inaccurate and misleading data if any. It is the sole responsibility of the Author concerned.

e-ISSN3032-601X&p-ISSN3032-7105

Vol. 1 Nb. 3b, Juli, 2024 Doi: 10.32672/mister.v1i3b.1774 Hal. 940-945

Berpikir Komputasi Matematika Siswa pada Pelajaran Matematika (Systematic Literature Review)

Putri Wardani^{1*}, Yahfizham²

Prodi Pendidikan Matematika, Fakultas Ilmu Tarbiyah dan Keguruan, Universitas Islam Negeri Sumatera Utara^{1,2}

Email: putri0305211014@uinsu.ac.id¹, yahfizham@uinsu.ac.id²

Diterima: 08-06-2024 | Disetujui: 09-06-2024 | Diterbitkan: 10-06-2024

ABSTRACT

In the increasingly modern era, many sophisticated technologies are used by users, both young and old. Likewise with students, with a curriculum that continues to innovate, learning developments also take part. Therefore, here the author discusses students' computational mathematical thinking in order to see how far students understand computing. The aim of this research is to provide a study of students' mathematical computational thinking. This research uses library research methods taken from several journals related to the title studied. And the results showed that students' computational thinking abilities were classified into two categories, namely medium and low. This is caused by some students who cannot freely think abstractly

Keywords: Thinking, Computing, Mathematics, Students

ABSTRAK

Perkembangan zaman yang semakin modern banyak teknologi-teknologi canggih digunakan oleh penggunanya, baik dikalangan muda maupun tua. Begitu juga dengan siswa, dengan adanya kurikulum yang terus menurus berinovasi maka perkembangan pembelajaranpun ikut kedalamnya. Oleh karena itu disini penulis membahas tentang berpikir secara komputasi matematika siswa agar dapat melihat seberapa jauh pemahakan siswa terhadap komputasi. Adapun tujuan dari penelitian ini yaitu untuk memberikan studi tentang berpikir komputasi matematika siswa. Penelitian ini menggunakan metode penelitian kepustakaan yang diambil dari beberapa jurnal yang berkaitan dengan judul yang diteliti. Dan memberikan hasil bahwa kemampuan berpikir komputasi siswa tergolong dalam dua kategori, yaitu sedang dan rendah. Yang disebabkan oleh beberapa siswa yang tidak bisa leluasa berpikir secara abstrak.

Katakunci: Berpikir, Komputasi, Matematika, Siswa

PENDAHULUAN

Matematika ditemukan hampir di setiap jenjang pendidikan karena matematika sangat berpengaruh dalam pembentukan pola pikir peserta didik mulai dari kerangka berpikir sistematis, berpikir kritis, kreatif, analitis, logis, dan berpikir aktif. Tujuan pembelajaran matematika di kurikulum 2013 lebih kepada penekanan dimensi pedagogik yang modern, yaitu dengan memakai pendekatan ilmiah (Fuadi, Johar, & Munzir, 2016). Tujuan – tujuan pembelajaran matematika tersebut merupakan unsur penting dalam upaya pembentukan kerangka berpikir komputasi peserta didik yang dapat dilihat dari kemampuannya menjawab instrumen tes yang diberikan

Berpikir kritis adalah suatu proses berpikir dimana pemikir itu sendiri menilai kua;itasnya menggunakan pemikiran yang reflektif, independen dan rasional. Berpikir kritis mencakup ketrampilan menafsirkan dan menilai pengamatan, informasi, dan argumentasi. Berpikir kritis meliputi pemikiran dan penggunaan alasan yang logis, mencakup ketrampilan membandingkan, mengklasifikasi, melakukan pengurutan (sekuensi), menghubungkan sebab dan akibat, mendeskripsikan pola, membuat analogi, menyusun rangkaian, memberi alasan secara deduktif dan induktif, peramalan, perencanaan, perumusan hipotesis, dan penyampaian kritik. Berpikir kritis mencakup penentuan tentang makna dan kepentingan dari apa yang dilihat atau dinyatakan, penilaian argumen, pertimbangan apakah kesimpulan ditarik berdasarkan bukti-bukti pendukung yang memadai.

Komputasi merupakan proses pemikiran yang didasari ilmu komputer tetapi dapat diterapkan dalam disiplin ilmu lain. Oleh karena itu, dalam tulisan ini akan memaparkan lebih lanjut tetang konsep serta indikator berpikir komputasi dan bagaimana memperkenalkan proses berpikir komputasi dalam pembelajaran matematika . Berpikir komputasi merupakan cara untuk menemukan pemecahan masalah dari data input dengan menggunakan suatu algoritma sebagaimana dengan mengaplikasikan melibatkan teknik yang digunakan oleh software dalam menulis program. Tetapi bukan berpikir seperti komputer, melainkan komputasi dalam hal berpikir untuk memformulasikan masalah dalam bentuk masalah komputasi serta menyusun solusi komputasi yang baik (dalam bentuk algoritma) atau menjelaskan mengapa tidak ditemukan solusi yang sesuai (Sa'diyyah, Mania, & Suharti, 2021).

Terdapat 4 indikator berpikir komputasi (Safari et al., 2021) yaitu; (1) Dekomposisi, siswa dapat mengidentifikasi informasi yang diketahui serta yang ditanyakan dari permasalahan yang ada, (2) pengenalan pola, siswa dapat menemukan pola serupa ataupun tidak selaras yang kemudian dipergunakan untuk membentuk penyelesaian masalah, (3) abstraksi, siswa dapat menemukan kesimpulan dengan menghilangkan unsur-unsur yang tidak dibutuhkan ketika melaksanakan rancangan pemecahan masalah, (4) berpikir logaritma siswa dapat menjabarkan langkahlangkah logis yang digunakan dalam menemukan solusi.

Pada kenyataannya kemampuan berpikir komputasi di Indonesia masih terbilang rendah, hal ini dibuktikan dengan peneliti terdahulu yang mengatakan bahwa kemampuan berpikir komputasi matematis siswa rendah atau di bawah rata-rata KKM (Jamna et al., 2022; Kamil, 2021; Supiarmo et al., 2021).

Oleh karena itu penulis tertarik untuk menulis artikel terkait dengan Berpikir Komputasi Matematika Siswa Pada Pelajaran Matematika

METODE PENELITIAN

Penelitian ini merupakan penelitian yang menggunakan systematic review. Terdapat 5 tahap

dalam pelaksanaannya yaitu: 1) Framing question, penyusunan pertanyaan yang ditujukan untuk menjawab permasalahan dalam penelitian. Pertanyaan ini menjadi dasar berjalannya proses review; 2) Identifying relevant work, pencarian artikel yang dilakukan pada goggle scholar dengan keyword yakni kemampuan pembuktian matematis mahasiswa. Kriteria inklusi yang ditetapkan ialah artikel ditulis dalam Bahasa Indonesia sejak tahun 2019; 3) Assesing the quality of studies, penilaian terhadap artikel artikel yang diperoleh untuk menguji kelayakannya, artikel yang dianggap tidak layak dengan alasan tertentu akan dieksklusi. 4) Summarizing the evidence, analisis sistematis terhadap artikel yang dianggap layak, membandingkannya dan membuat pingkasan analisis tersebut; 5) Binterpreting the findings, interpretasi terhadap artikel yang telah diinklusi untuk menjawab permasalahan yang telah dirumuskan sebelumnya.

HASIL DAN PEMBAHASAN

Tabel 1. Berpikir Komputasi Matematika Siswa Pada Pelajaran Matematika

Tabel 1. Berpikir Komputasi Matematika Siswa Pada Pelajarah Matematika								
Penelitian & Tahun	Jurnal	Hasil Penelitain						
Nilam D. Jamna, Hasan	Jurnal Pendidikan Guru	Kemampuan komputasi matematis siswa di SMP						
Hamid, dan Marwia	Matematika	Negeri 5 Kota Ternate tergolong rendah						
Tamrin Bakar		Peserta didik pada kategori tinggi sudah mampu						
2022		memenuhi semua indikator, pada peserta						
		didikdengan kategori cukup sudah mampu						
		memenuhi soal dengan indikator Decomposition						
		dan						
		Pettern recognition namun kurang pada indikator						
		Algorithms dan Debugging, sedangkan pada						
		Peserta didik dengan kemampuan berkategori						
		rendah, kurang mampu dalam memenuhi						
		indikator Decomposition, Pettern recognition.						
		Algorithms, dan Debugging.						
Muhammad Rijal Kamil,	AKSIOMA: Jurnal	Dari hasil penelitian dapat disimpulkan bahwa						
Adi Ihsan Imami, Agung	Matematika dan	pada kategori baik peserta didik telah mencapai						
Prasetyo Abadi	Pendidikan Matematika	seluruh indikator kemampuan berpikir komputasi.						
2021		Pada kategori cukup peserta didik telah mencapai						
		seluruh indikator kemampuan berpikir						
		komputasim, namun pada indikator generalization						
		peserta didik belum dapat menentukan solusi yang						
		cepat. Sedangkan pada kategori rendah peserta						
		didik belum mencapai seluruh indikator						
		kemampuan berpikir komputasi matematis.						
Alya Rihhadatul Aisy,	Jurnal Didactical	Berdasarkan hasil penelitian, diperoleh informasi						
Dori Lukman Hakim	Mathematics	bahwa ST mampu menguraikan permasalahan,						
2023		menemukan bagian penting dari permasalahan,						
		dan menyelesaikan permasalahan secara						
		berurutan. Sedangkan SS mampu menguraikan						
		permasalahan dan menyelesaikan permasalahan						

e-ISSN3032-601X & p-ISSN3032-7105

		secara berurutan. Sedangkan SR hanya dapat
		menguraikan permasalahan
Mustafa 2023	Mathema Journal	Terdapat perbedaan dalam kemampuan siswa
		dalam memecahkan masalah sebelum dan setelah
		dilakukan proses pembelajaran. Keaktifan siswa
		dalam pembelajaran dengan menggunakan konsep
		berpikir komputasi berbantuan Chat-GPT secara
		signifikan mempengaruhi 57,4% kemampuan
		pemecahan masalah matematika
Firni Nuraini, Nur	Jurnal Cendekia: Jurnal	Hasil yang telah didapatkan dalam penelitian
Agustiani, Yanti Mulyanti	Pendidikan Matematika	yaitu subjek dengan kategori kemandirian belajar
2023		yang rendah hanya memenuhi satu indicator yaitu
		dekomposisi. Kemudian subjek dengan kategori
		kemandirian belajar sedang hanya dua indicator
		yang terpenuhi yaitu dekomposisi dan pengenalan
		pola. Sedangkan subjek dengan kategori
		kemandirian belajar tinggi dapat memenuhi semua
		indicator yang ada.
Hanifah Rizki Mubarokah	JNPM (Jurnal Nasional	Komputasi siswa kelas VIII G SMP Nuris Jember
, Didik Sugeng Pambudi,	Pendidikan Matematika)	dari 25 siswa menunjukkan bahwa 16% siswa
Nurcholif Diah Sri		yang mempunyai kemampuan komputasi rendah,
Lestari, Dian Kurniati,		64% siswa yang mempunyai kemampuan berpikir
Dhanar Dwi Hary		komputasi sedang, dan 20% yang mempunyai
Jatmiko. 2023		kemampuan berpikir komputasi tinggi. Siswa
		kelas VIII G rata-rata mampu memenuhi indikator
		kemampuan berpikir komputasi yaitu
		dekomposisi, berpikir algoritma, pengenalan pola
Siska Lestari, Lessa	Range: Jurnal Pendidikan	Kemampuan berpikir komputasional siswa dapat
Roesdiana	Matematika	dikategorikan menjadi 5 kategori yaitu : pada
2023		kategori sangat baik terdapat 3 siswa dengan
		presentase 8%, kategori baik terdapat 6 siswa
		dengan presentase 17%, kategori cukup terdapat
		15 siswa dengan presentase 43%, kategori rendah
		terdapat 9 siswa dengan presentase 26%, dan pada
		kategori sangat rendah terdapat 2 siswa dengan
		presentase 6%. Dapat disimpulkan bahwa siswa
		pada kategori baik sudah mampu memenuhi
		semua indikator namun kurang sempurna pada
		indikator berpikir abstraksi.
Utami Puspita Sabilla	Jurnal Pembelajaran	Berdasarkan data yang diperoleh, diketahui bahwa
Mustaqimah1, Khomsatun	Matematika Inovatif	kemampuan berpikir komputasi siswa secara
Ni'mah2		keseluruhan dapat dikatakan masih tergolong
2024		cukup rendah, karena baru mencapai indikator
		decomposition dan pattern recognition. Adapun
		indikator abstraction dan algorithm, siswa belum
		mengusai sepenuhnya.

Berdasarkan artikel 1 kemampuan komputasi siswa tergolong rendah yang diakibatkan oleh kurangnya memahami algoritma dalam penyelesaian soal. Berdasarkan artikel 2 kemampuan komputasi siswa tergolong dalam kategori baik karena telah mencapai seluruh indikatorkemampuan berfikir komputasi. Berdasarkan artikel 3 kemampuan komputasi siswa tergolong dalam 3 katergori. Siswa yang memiliki kemampuan rendah hanya dapat menguraikan masalah, berkemampuan sedang mampu menguraikan masalah dan mentelesaikannya, sedangkan berkemampuan tinggi siswa mampu menguraikan, menyelesaikan, dan menemukan hal yang penting pada permasalahan tersebut. Berdasarkan artikel 4 kemampuan komputasi siswa lebih dari setengah siswa yang sudah bisa memecahkan masalah matematika

Berdasarkan artikel 5 kemampuan komputasi siswa tergolong sedang karena hanya dua indikator yang memenuhui kategori siswa. Berdasarkan artikel 6 kemampuan komputasi siswa tergolong sedang, karena jika dipresentasikan siswa yang memiliki kemampuan sedang terdapat 64%. Sedangkan yang memiliki kemampuan rendah 16% dan tinggi 20%. Berdasarkan artikel 7 kemampuan komputasi siswa tergolong cukup dikarenakan siswa merasa kurang sempurna pada berpikir abstrak. Berdasarkan artikel 8 kemampuan komputasi siswa tergolong cukup rendah karena baru mencapai indikator decomposition dan pattern recognition. Adapun indikator abstraction dan algorithm, siswa belum mengusai sepenuhnya.

KESIMPULAN

Berdasarkan penelitian diatas dapat disimpulkan bahwa berpikir komputasi siswa pada pelajaran matematika tergolong menjadi dua, yaitu sedang dan rendah. Hal tersebut disebabkan oleh beberapa siswa yang tidak bisa leluasa berpikir secara abstrak. Namun untuk itu siswa sudah mampu menguraikan dan menyelesaikan masalah. Hanya saja jika di siswa diajak untuk berpikir abstrak mereka mengaku sulit untuk membayangknnya.

DAFTAR PUSTAKA

- Aisy, A. R., & Hakim, D. L. (2023). KEMAMPUAN BERPIKIR KOMPUTASI MATEMATIS SISWA SMP PADA MATERI POLA BILANGAN. *Jurnal Didactical Mathematics*, 5(2), 348-360.
- Cahdriyana, R. A., & Richardo, R. (2020). BERPIKIR KOMPUTASI DALAM PEMBELAJARAN MATEMATIKA. *Literasi*, 11(1), 50-56.
- Fahkiroh, A., Fatmawati, D. P., & Amalia, S. R. (2023). STUDI LITERATUR: LITERASI DIGITAL SEBAGAI DASAR DARI KOMPETENSI PEDAGOGIK PADA CALON GURU MATEMATIKA DI ERA SOCIETY 5.0. *ProSANDIKA UNIKAL (Prosiding Seminar Nasional Pendidikan Matematika Universitas Pekalongan)*, 4(1),529–538.
- Fuadi, R.., Johar, R.., & Munzir, S. (2016). PENINGKATKAN KEMAMPUAN PEMAHAMAN DAN PENALARAN MATEMATIS MELALUI PENDEKATAN KONTEKSTUAL. 3(1), 47–54.
- Hasibuan, A. N., & Yahfizham. (2024). PEMBELAJARAN BERBASIS PROYEK MENGGUNAKAN SOFTWAREMATEMATIKA GEOGEBRA TERHADAP KEMAMPUAN KOMPUTASI SISWA. *Katalis Pendidikan : Jurnal Ilmu Pendidikan dan Matematika*, 1(2), 1-10. Jamna, N., Hamid, H., & Bakar, M. T. (2022). ANALISIS KEMAMPUAN BERPIKIR KOMPUTASI

- MATEMATIS SISWA SMP PADA MATERI PERSAMAAN KUADRAT. Jurnal Pendidikan Guru Matematika, 2(3), 278-288.
- Kamil, M. R., Imami, A. I., & Abadi, A. P. (2021). ANALISIS KEMAMPUAN BERPIKIR KOMPUTASIONAL MATEMATIS SISWA KELAS IX SMP NEGERI 1 CIKAMPEK PADA MATERI POLA BILANGAN. *AKSIOMA: Jurnal Matematika dan Pendidikan Matematika*, 12(2), 259-270.
- Lestari, S., & Roesdiana, L. (2023). ANALISIS KEMAMPUAN BERPIKIR KOMPUTASIONAL MATEMATIS SISWA PADA MATERI PROGRAM LINEAR. *Range: Jurnal Pendidikan Matematika*, 4(2), 178-188.
- Mubarokah. H. K., Pambudi, D. S., Lestari, N. D. S., Kurniati, D., & Jatmiko, D. D. H. (2023) KEMAMPUAN BERPIKIR KOMPUTASI SISWA DALAM MENYELESAIKAN SOAL NUMERASI TIPE AKM MATERI POLA BILANGAN. *JNPM (Jurnal Nasional Pendidikan Matematika)*, 7(2), 343-355.
- Mustafa, (2023). AKTIVITAS SISWA DALAM MEMECAHKAN MASALAH MATEMATIKA DENGAN BERPIKIR KOMPUTASI BERBANTUAN CHAT-GPT. *Mathema Journal*, 5(2), 2686-5823.
- Mustaqimah, U. P.S., & Ni'mah, K. (2024). PROFIL KEMAMPUAN BERPIKIR KOMPUTASI SISWA SMP PADA SOAL TANTANGAN BEBRAS. *Jurnal Pembelajaran Matematika Inovatif*, 7(2), 297-308.
- Nuraini, F., Agustiani, N., & Mulyanti, Y. (2023). ANALISIS KEMAMPUAN BERPIKIR KOMPUTASI DITINJAU DARI KEMANDIRIAN BELAJAR SISWA KELAS X SMK. *Jurnal Cendekia: Jurnal Pendidikan Matematika*, 7(3), 3067-3082.
- Rif'at, D. N., Shufairo, S., & Zulfahmi, M. N. (2024). ANALISIS KECERDASAN LOGIKA MATEMATIKA MELALUI APLIKASI MATH DI SEKOLAH DASAR. *Scientica : Jurnal Ilmiah Sain dan Teknologi*, 2(1), 326–334.
- Sa'diyyah, F. N., Mania, S., & Suharti. (2021). PENGEMBANGAN INSTRUMEN TES UNTUK MENGUKUR KEMAMPUAN BERPIKIR KOMPUTASI SISWA. *Jurnal Pembelajaran Matematika Inovatif*, 4(1), 17-26.
- Safitri, T., Ginting, T. L., Indriani, W., & Siregar, R. (2024). ANALISIS KEMAMPUAN BERPIKIR KOMPUTASI MATEMATIS SISWA PADA PEMBELAJARAN MATEMATIKA. *Bilangan : Jurnal Ilmiah Matematika, Kebumian dan Angkasa*, 2(2), 10-16.