

DECIPHERING THE CULTURAL DIMENSIONS OF MATHEMATICS PROFICIENCY AMONG EDUCATORS

Christiyanti Aprinastuti^{12*}

¹University of Debrecen, Hungary

²Sanata Dharma University, Indonesia
*christiyantia@science.unideb.hu

ABSTRACT

This study determines lecturers' perceptions of cultural impact on math proficiency, going beyond algorithms. The participants were 13 lecturers of prospective primary school teachers training in Indonesia, and we reached information by structured interview. Data was analyzed with a thematic content analysis. The findings unravel educators' unique viewpoints on language, teaching styles, representation in learning materials, and technology use, shedding light on the complexities of fostering a culturally inclusive math education environment. The conclusion synthesizes fundamental discoveries, discusses their implications for educational practices, and calls for an ongoing commitment to integrating educators' perspectives in pursuing equitable and effective mathematical education.

Keywords: algorithm, cultural, math proficiency, educators' perspective

1. INTRODUCTION

In the landscape of global education, mathematics stands as a universal language, its principles transcending borders and cultures. However, cultural elements have a complex impact on how mathematics is taught and learned. Research has consistently shown that cultural dimensions significantly influence math proficiency, teaching methods, learning preferences, and the language of mathematical concepts. Hu (2018) found that national culture accounts for a significant portion of the variation in math performance across countries. Fasheh (1982) emphasized the importance of incorporating cultural and societal sources in math education to make it more meaningful and effective. Ferrare (2014) and Aguirre (2013) both highlighted the need for culturally responsive teaching practices, with Ferrare (2014) suggesting that these practices can be seen as opportunities for pedagogical innovation. Aguirre (2013) further proposed a lesson analysis tool that integrates mathematical thinking, language, culture, and social justice to enhance culturally responsive teaching. As educators navigate the dynamic field of mathematics education, recognizing cultural nuances becomes paramount. This introductory section provides a lens into the expansive world of mathematics education, acknowledging its global significance while laying the foundation for exploring cultural intricacies in shaping math proficiency.

Within this context, understanding the profound impact of cultural dimensions on math proficiency becomes a focal point. The significance of this understanding is underscored by the realization that cultural elements shape not only the content but also the methods through which mathematical concepts are conveyed and comprehended (Bishop, 1988; Rosa, 2011). As educators grapple with the diverse tapestry of student backgrounds, the need for an in-depth exploration of these cultural dimensions becomes evident. Beyond the algorithms that traditionally define mathematical pedagogy, a nuanced understanding of educators' perspectives emerges as a central theme in this inquiry.

The research objectives outlined in this study aim to unravel the layers of educators' perceptions concerning the cultural impact on math proficiency. This journey extends beyond the confines of algorithmic approaches, seeking to reveal the nuanced ways in which culture intertwines with the teaching and learning of mathematics. The rationale for delving into these cultural dimensions is rooted in the belief that a more profound understanding can enrich educational practices and contribute to a more inclusive and effective mathematics education environment. By examining educators' perspectives, we aim to bridge the gap between theory and practice, shedding light on the complexities that influence math proficiency in diverse cultural contexts.

2. METHODS

A carefully designed research methodology was utilized to understand educators' viewpoints on the cultural aspects of math proficiency. The focus was on obtaining detailed and insightful perspectives to unravel the intricate cultural influences in mathematics education. The study commenced by engaging 13 educators actively involved in preservice primary school teachers in Indonesia. The selection of participants aimed to capture diverse perspectives, considering varied backgrounds that contribute to cultural diversity in education. Data collection primarily relied on structured interviews to delve deep into educators' perceptions and experiences. The structured format maintained consistency and allowed for a systematic exploration of cultural impacts on math proficiency. Thematic content analysis played a crucial role in interpreting the data and identifying recurring themes and patterns. Ethical considerations ensured that participants were well-informed, provided voluntary consent, and protected their privacy. The subsequent sections unveil key findings from the study, shedding light on the influence of language, teaching methods, learning materials, and technology on math proficiency. The meticulous methodology positions the study to enrich discussions on culturally inclusive mathematics education significantly.

3. RESULTS & DISCUSSION

The researcher derived the following theme analysis results from the participant interviews:

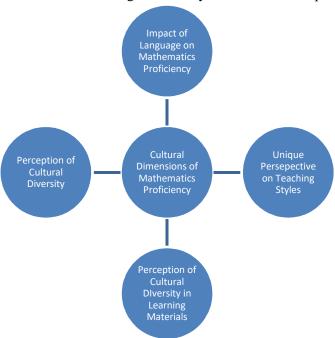


Figure 1. Themes and Subthemes of Cultural Dimensions

Impact of Language on Math Proficiency

PROCEEDINGS OF INTERNATIONAL CONFERENCE ON EDUCATION TEACHER TRAINING & EDUCATION FACULTY UNIVERSITAS SERAMBI MEKKAH NO. ISSN 2987-4564

The exploration of educators' perspectives unveiled a compelling narrative regarding the significant role language plays in shaping math proficiency. One participant remarked, "In my experience, language is not just a tool; it is the bridge that connects students to the world of math. The whole mathematical concept becomes elusive when they struggle with the language." This participant has teaching experience in the classroom with students from remote areas of Indonesia. Sometimes, the students still use their traditional language. This perspective highlights language's critical impact on learners' understanding of mathematical concerns. As Boulet (2007) emphasizes the need for productive and meaningful mathematical discourse in the classroom, this participant's perspective resonates with the broader understanding of language as a fundamental conduit for mathematical learning. It invites us to consider language-sensitive teaching practices as crucial elements in promoting equitable learning experiences. Moreover, it prompts a reflection on how educators can collaboratively address linguistic challenges to enhance overall math proficiency. It is supported by Moffett (2018), who underscores the importance of developing vocabulary and context to articulate their mathematical thinking.

Unique Perspectives on Teaching Styles

Diversity in teaching styles surfaced as a prominent theme, reflecting the influence of educators' cultural backgrounds. An educator shared, "Teaching is an art, and my cultural background is my palette. I believe in bringing cultural elements into the classroom to make the learning experience richer and more relatable for my students." This quote captures the connection between cultural heritage and teaching styles. This participant's perspective aligns with the idea that teaching is not a one-size-fits-all endeavour. Acknowledging and incorporating cultural nuances into teaching styles can create a more engaging and inclusive learning environment. As discussed by McAlister-Shields (2021), culturally responsive teaching is a key factor in creating an inclusive and engaging learning environment. It prompts discussions on how educators can embrace diverse approaches, fostering an atmosphere where students from varied backgrounds feel seen and valued. This aligns with the notion that education should be a practice that deals critically and creatively with the reality of diverse student experiences.

Perception of Cultural Diversity in Learning Materials

Insights into educators' perceptions of cultural diversity in learning materials underscored the significance of representation in shaping math education. One participant expressed, "When students see themselves reflected in the learning materials, it is like a spark. Suddenly, math is not just numbers but a part of their world." This highlights the positive impact of incorporating diverse cultural elements into learning materials. This participant's observation emphasizes the importance of representation in learning materials. It aligns with the broader understanding that culturally inclusive materials enhance student engagement and comprehension (Underwood, 2011). Educators can collaborate to develop and integrate learning materials that incorporate real-world examples from various cultures. This approach makes mathematics more relevant and fosters a sense of belonging for students from diverse backgrounds.

Educators' Views on Technology Use

The discussion on educators' views on technology use in math education revealed various perspectives. A participant shared, "I have seen technology break down cultural barriers in math. Virtual tools and multimedia resources help students visualize concepts in ways that transcend cultural differences." This perspective emphasizes the potential of technology to enhance cultural inclusivity in math education. This participant's perspective on technology highlights its transformative potential when used thoughtfully. It encourages a broader conversation on leveraging technology to bridge cultural gaps, providing students with innovative and culturally sensitive learning experiences. It is confirmed by Ratnam (2020), who underscores the need for interactive intercultural digital

PROCEEDINGS OF INTERNATIONAL CONFERENCE ON EDUCATION TEACHER TRAINING & EDUCATION FACULTY UNIVERSITAS SERAMBI MEKKAH NO. ISSN 2987-4564

engagement. However, it also acknowledges the need for a balanced approach, prompting discussions on ethical considerations and strategies to ensure that technology integration aligns with cultural sensitivities.

In synthesizing these participant perspectives, the discussion delves into the broader implications for cultivating culturally inclusive math education. It prompts educators and researchers to reconsider teaching practices, materials, and technology integration through the lens of cultural responsiveness, ultimately aiming for a more equitable and effective mathematics education environment.

4. CONCLUSION

In our study on educators' viewpoints regarding the cultural aspects of math proficiency, we have uncovered valuable insights. Educators have emphasized the importance of language, teaching styles, learning materials, and technology in molding mathematical comprehension. Language's impact on math proficiency has been highlighted, with educators recognizing it as a vital link connecting students to mathematics. This underscores the necessity for teaching practices sensitive to language, addressing linguistic obstacles to ensure fair learning opportunities. The diversity in teaching styles, likened to an art form by an educator, underscores the intricate relationship between cultural heritage and teaching methods. This emphasizes the need to appreciate and embrace various teaching styles, fostering an inclusive learning environment where cultural nuances enrich the educational landscape. The significance of cultural diversity in learning materials has been underscored, with educators acknowledging the transformative influence of students seeing themselves represented in educational resources. This insight advocates for developing and incorporating culturally inclusive learning materials to boost student engagement and understanding. Educators' perspectives on technology usage have revealed a range of approaches, emphasizing the importance of leveraging technology thoughtfully to bridge cultural gaps while remaining mindful of cultural sensitivities. This underscores the necessity for a balanced and culturally responsive approach to integrating technology. By synthesizing these insights, it is evident that our exploration transcends the conventional boundaries of mathematics education. It calls for a shift in perspective that embraces cultural inclusivity as a fundamental aspect of effective teaching and learning, prompting a reevaluation of curriculum design, teaching methodologies, and technology integration to reflect the diversity of student experiences.

In summary, our research calls upon educators, policymakers, and researchers to join forces in advancing culturally inclusive mathematics education. The voices of our participants champion a comprehensive approach that values diverse perspectives, embraces cultural richness, and fosters an atmosphere where each student can thrive. Beyond mere algorithms, we set on a path toward an educational terrain that instils mathematical expertise and nurtures a profound appreciation for the cultural dimensions influencing our shared learning expedition.

5. ACKNOWLEDGMENTS

We extend our deepest gratitude to the educators who generously shared their insights and experiences, forming the cornerstone of this research. Their participation and openness have enriched our understanding of the intricate interplay between cultural dimensions and math proficiency. Additionally, we express appreciation for Sanata Dharma University and the University of Debrecen, who facilitated the research process and provided valuable support. This study would not have been possible without the collaborative efforts and contributions of all those involved, and we acknowledge their pivotal role in advancing our exploration of culturally inclusive mathematics education.

PROCEEDINGS OF INTERNATIONAL CONFERENCE ON EDUCATION TEACHER TRAINING & EDUCATION FACULTY UNIVERSITAS SERAMBI MEKKAH NO. ISSN 2987-4564

REFERENCES

- Aguirre, J.M., & del Rosario Zavala, M. (2013). Making culturally responsive mathematics teaching explicit: a lesson analysis tool. *Pedagogies: An International Journal*, 8, 163 190.
- Atweh, B., Clarkson, P., & Nebres, B. (2003). Mathematics education in international and global contexts. *Second international handbook of mathematics education*, 185-229.
- Bishop, A. J. (1988). Mathematics education in its cultural context. *Educational studies in mathematics*, 19(2), 179-191.
- Boulet, G. (2007). How does language impact the learning of mathematics? Let me count the ways. *Journal of Teaching and Learning*, 5(1).
- Carvalho, J.Á. (2012). Validation criteria for the outcomes of design research. https://hdl.handle.net/1822/21713
- Fasheh, M. (1982). Mathematics, culture, and authority. For the learning of mathematics, 3(2), 2-8.
- Ferrare, J.J., & Hora, M.T. (2014). Cultural Models of Teaching and Learning in Math and Science: Exploring the Intersections of Culture, Cognition, and Pedagogical Situations. *The Journal of Higher Education*, 85, 792 825.
- Hu, X., Leung, F.K., & Teng, Y. (2018). The influence of culture on students' mathematics achievement across 51 countries. *International Journal of Science and Mathematics Education*, 16, 7-24.
- Makramalla, M. (2022). Commentary: Mathematics education in a globally precarious reality—a simulated dialogue between two key players. *Research in Mathematics Education*, 24, 249 261.
- McAlister-Shields, L., Hutchison, L.F., & Jones, B.E. (2021). *Teaching through culture*. In Research Anthology on Empowering Marginalized Communities and Mitigating Racism and Discrimination.
- Moffett, P. (2018). Learning to articulate mathematical thinking. Early Years Educator, 20(8), 18-20.
- Ratnam, C., Powell, R.E., Keel, C., & Wickes, R. (2020). The role of technology is to facilitate and support intercultural engagement. Monash University. Report. DOI: https://doi.org/10.26180/5ed6ec5665a8c
- Rosa, M. & Orey, D. C. (2011). Ethnomathematics: the cultural aspects of mathematics. *Revista Latinoamericana de Etnomatemática*, 4(2). 32-54
- Underwood, P. S. (2009). Effects of culturally-responsive teaching practices on first grade students' reading comprehension and vocabulary gains. The Florida State University.